End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.14017
Surface-based cortical analysis is valuable for a variety of neuroimaging tasks, such as spatial normalization, parcellation, and gray matter (GM) thickness estimation. However, most tools for estimating cortical surfaces work exclusively on scans with at least 1 mm isotropic resolution and are tuned to a specific magnetic resonance (MR) contrast, often T1-weighted (T1w). This precludes application using most clinical MR scans, which are very heterogeneous in terms of contrast and resolution. Here, we use synthetic domain-randomized data to train the first neural network for explicit estimation of cortical surfaces from scans of any contrast and resolution, without retraining. Our method deforms a template mesh to the white matter (WM) surface, which guarantees topological correctness. This mesh is further deformed to estimate the GM surface. We compare our method to recon-all-clinical (RAC), an implicit surface reconstruction method which is currently the only other tool capable of processing heterogeneous clinical MR scans, on ADNI and a large clinical dataset (n=1,332). We show a approximately 50 % reduction in cortical thickness error (from 0.50 to 0.24 mm) with respect to RAC and better recovery of the aging-related cortical thinning patterns detected by FreeSurfer on high-resolution T1w scans. Our method enables fast and accurate surface reconstruction of clinical scans, allowing studies (1) with sample sizes far beyond what is feasible in a research setting, and (2) of clinical populations that are difficult to enroll in research studies. The code is publicly available at https://github.com/simnibs/brainnet.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.14017
- https://arxiv.org/pdf/2505.14017
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415021721
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415021721Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.14017Digital Object Identifier
- Title
-
End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance ImagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-20Full publication date if available
- Authors
-
Jesper D. Nielsen, Karthik Gopinath, Andrew Hoopes, Adrian V. Dalca, Colin Magdamo, S. R. Arnold, Sudeshna Das, Axel Thielscher, Juan Eugenio Iglesias, Oula PuontiList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.14017Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.14017Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.14017Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415021721 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.14017 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.14017 |
| ids.openalex | https://openalex.org/W4415021721 |
| fwci | |
| type | preprint |
| title | End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.989300012588501 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9717000126838684 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T14510 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9603000283241272 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Medical Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.14017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.14017 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.14017 |
| locations[1].id | doi:10.48550/arxiv.2505.14017 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.14017 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102803286 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3697-1012 |
| authorships[0].author.display_name | Jesper D. Nielsen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nielsen, Jesper Duemose |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054796268 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1949-0711 |
| authorships[1].author.display_name | Karthik Gopinath |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gopinath, Karthik |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5071711786 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7583-5972 |
| authorships[2].author.display_name | Andrew Hoopes |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hoopes, Andrew |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091409910 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8422-0136 |
| authorships[3].author.display_name | Adrian V. Dalca |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dalca, Adrian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5004073842 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8965-4630 |
| authorships[4].author.display_name | Colin Magdamo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Magdamo, Colin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5008958490 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4881-5685 |
| authorships[5].author.display_name | S. R. Arnold |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Arnold, Steven |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5062048275 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9486-6811 |
| authorships[6].author.display_name | Sudeshna Das |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Das, Sudeshna |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5064250454 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4752-5854 |
| authorships[7].author.display_name | Axel Thielscher |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Thielscher, Axel |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5054888342 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7569-173X |
| authorships[8].author.display_name | Juan Eugenio Iglesias |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Iglesias, Juan Eugenio |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5071613278 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3186-244X |
| authorships[9].author.display_name | Oula Puonti |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Puonti, Oula |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.14017 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | End-to-end Cortical Surface Reconstruction from Clinical Magnetic Resonance Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.989300012588501 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.14017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.14017 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.14017 |
| primary_location.id | pmh:oai:arXiv.org:2505.14017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.14017 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.14017 |
| publication_date | 2025-05-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.% | 163 |
| abstract_inverted_index.1 | 36 |
| abstract_inverted_index.a | 6, 44, 101, 153, 160, 217 |
| abstract_inverted_index.50 | 162 |
| abstract_inverted_index.GM | 122 |
| abstract_inverted_index.MR | 59, 148 |
| abstract_inverted_index.We | 124, 158 |
| abstract_inverted_index.an | 131 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.at | 34, 238 |
| abstract_inverted_index.by | 188 |
| abstract_inverted_index.in | 65, 165, 216, 230 |
| abstract_inverted_index.is | 3, 116, 137, 214, 235 |
| abstract_inverted_index.mm | 37 |
| abstract_inverted_index.of | 8, 67, 86, 91, 144, 181, 202, 222 |
| abstract_inverted_index.on | 31, 150, 190 |
| abstract_inverted_index.to | 43, 77, 104, 119, 128, 171, 176, 228 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.(1) | 207 |
| abstract_inverted_index.(2) | 221 |
| abstract_inverted_index.Our | 98, 194 |
| abstract_inverted_index.RAC | 177 |
| abstract_inverted_index.T1w | 192 |
| abstract_inverted_index.The | 233 |
| abstract_inverted_index.and | 16, 40, 69, 94, 152, 178, 198, 220 |
| abstract_inverted_index.any | 92 |
| abstract_inverted_index.are | 41, 62, 226 |
| abstract_inverted_index.far | 211 |
| abstract_inverted_index.for | 5, 25, 83 |
| abstract_inverted_index.mm) | 173 |
| abstract_inverted_index.our | 126 |
| abstract_inverted_index.the | 79, 105, 121, 139, 182 |
| abstract_inverted_index.use | 73 |
| abstract_inverted_index.(GM) | 19 |
| abstract_inverted_index.(MR) | 48 |
| abstract_inverted_index.(WM) | 108 |
| abstract_inverted_index.0.24 | 172 |
| abstract_inverted_index.0.50 | 170 |
| abstract_inverted_index.ADNI | 151 |
| abstract_inverted_index.This | 53, 114 |
| abstract_inverted_index.code | 234 |
| abstract_inverted_index.data | 76 |
| abstract_inverted_index.fast | 197 |
| abstract_inverted_index.from | 89 |
| abstract_inverted_index.gray | 17 |
| abstract_inverted_index.mesh | 103, 115 |
| abstract_inverted_index.most | 23, 57 |
| abstract_inverted_index.only | 140 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.such | 11 |
| abstract_inverted_index.that | 225 |
| abstract_inverted_index.tool | 142 |
| abstract_inverted_index.very | 63 |
| abstract_inverted_index.what | 213 |
| abstract_inverted_index.with | 33, 174, 208 |
| abstract_inverted_index.work | 29 |
| abstract_inverted_index.(from | 169 |
| abstract_inverted_index.Here, | 71 |
| abstract_inverted_index.error | 168 |
| abstract_inverted_index.first | 80 |
| abstract_inverted_index.large | 154 |
| abstract_inverted_index.least | 35 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.other | 141 |
| abstract_inverted_index.scans | 32, 90 |
| abstract_inverted_index.sizes | 210 |
| abstract_inverted_index.terms | 66 |
| abstract_inverted_index.tools | 24 |
| abstract_inverted_index.train | 78 |
| abstract_inverted_index.tuned | 42 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.which | 61, 110, 136 |
| abstract_inverted_index.white | 106 |
| abstract_inverted_index.(RAC), | 130 |
| abstract_inverted_index.(T1w). | 52 |
| abstract_inverted_index.better | 179 |
| abstract_inverted_index.beyond | 212 |
| abstract_inverted_index.enroll | 229 |
| abstract_inverted_index.matter | 18, 107 |
| abstract_inverted_index.method | 99, 127, 135, 195 |
| abstract_inverted_index.neural | 81 |
| abstract_inverted_index.sample | 209 |
| abstract_inverted_index.scans, | 60, 149, 204 |
| abstract_inverted_index.scans. | 193 |
| abstract_inverted_index.tasks, | 10 |
| abstract_inverted_index.capable | 143 |
| abstract_inverted_index.compare | 125 |
| abstract_inverted_index.dataset | 156 |
| abstract_inverted_index.deforms | 100 |
| abstract_inverted_index.enables | 196 |
| abstract_inverted_index.further | 117 |
| abstract_inverted_index.network | 82 |
| abstract_inverted_index.respect | 175 |
| abstract_inverted_index.spatial | 13 |
| abstract_inverted_index.studies | 206 |
| abstract_inverted_index.surface | 133, 200 |
| abstract_inverted_index.variety | 7 |
| abstract_inverted_index.without | 96 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accurate | 199 |
| abstract_inverted_index.allowing | 205 |
| abstract_inverted_index.analysis | 2 |
| abstract_inverted_index.clinical | 58, 147, 155, 203, 223 |
| abstract_inverted_index.contrast | 68, 93 |
| abstract_inverted_index.cortical | 1, 27, 87, 166, 184 |
| abstract_inverted_index.deformed | 118 |
| abstract_inverted_index.detected | 187 |
| abstract_inverted_index.estimate | 120 |
| abstract_inverted_index.explicit | 84 |
| abstract_inverted_index.feasible | 215 |
| abstract_inverted_index.implicit | 132 |
| abstract_inverted_index.magnetic | 46 |
| abstract_inverted_index.patterns | 186 |
| abstract_inverted_index.publicly | 236 |
| abstract_inverted_index.recovery | 180 |
| abstract_inverted_index.research | 218, 231 |
| abstract_inverted_index.setting, | 219 |
| abstract_inverted_index.specific | 45 |
| abstract_inverted_index.studies. | 232 |
| abstract_inverted_index.surface, | 109 |
| abstract_inverted_index.surface. | 123 |
| abstract_inverted_index.surfaces | 28, 88 |
| abstract_inverted_index.template | 102 |
| abstract_inverted_index.thinning | 185 |
| abstract_inverted_index.valuable | 4 |
| abstract_inverted_index.available | 237 |
| abstract_inverted_index.contrast, | 49 |
| abstract_inverted_index.currently | 138 |
| abstract_inverted_index.difficult | 227 |
| abstract_inverted_index.isotropic | 38 |
| abstract_inverted_index.precludes | 54 |
| abstract_inverted_index.reduction | 164 |
| abstract_inverted_index.resonance | 47 |
| abstract_inverted_index.synthetic | 74 |
| abstract_inverted_index.thickness | 20, 167 |
| abstract_inverted_index.(n=1,332). | 157 |
| abstract_inverted_index.FreeSurfer | 189 |
| abstract_inverted_index.estimating | 26 |
| abstract_inverted_index.estimation | 85 |
| abstract_inverted_index.guarantees | 111 |
| abstract_inverted_index.processing | 145 |
| abstract_inverted_index.resolution | 39 |
| abstract_inverted_index.T1-weighted | 51 |
| abstract_inverted_index.application | 55 |
| abstract_inverted_index.estimation. | 21 |
| abstract_inverted_index.exclusively | 30 |
| abstract_inverted_index.populations | 224 |
| abstract_inverted_index.resolution, | 95 |
| abstract_inverted_index.resolution. | 70 |
| abstract_inverted_index.retraining. | 97 |
| abstract_inverted_index.topological | 112 |
| abstract_inverted_index.correctness. | 113 |
| abstract_inverted_index.neuroimaging | 9 |
| abstract_inverted_index.Surface-based | 0 |
| abstract_inverted_index.aging-related | 183 |
| abstract_inverted_index.approximately | 161 |
| abstract_inverted_index.heterogeneous | 64, 146 |
| abstract_inverted_index.parcellation, | 15 |
| abstract_inverted_index.normalization, | 14 |
| abstract_inverted_index.reconstruction | 134, 201 |
| abstract_inverted_index.high-resolution | 191 |
| abstract_inverted_index.domain-randomized | 75 |
| abstract_inverted_index.recon-all-clinical | 129 |
| abstract_inverted_index.https://github.com/simnibs/brainnet. | 239 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |