End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1038/s41524-023-01080-x
Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41524-023-01080-x
- https://www.nature.com/articles/s41524-023-01080-x.pdf
- OA Status
- gold
- Cited By
- 9
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3161424953
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3161424953Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41524-023-01080-xDigital Object Identifier
- Title
-
End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse designWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-13Full publication date if available
- Authors
-
Han Liu, Yuhan Liu, Kevin Li, Zhangji Zhao, Samuel S. Schoenholz, Ekin D. Cubuk, Puneet Gupta, Mathieu BauchyList of authors in order
- Landing page
-
https://doi.org/10.1038/s41524-023-01080-xPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41524-023-01080-x.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41524-023-01080-x.pdfDirect OA link when available
- Concepts
-
Differentiable function, Inverse, Computer science, Computational science, Pipeline (software), Mathematical optimization, Mathematics, Mathematical analysis, Geometry, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3161424953 |
|---|---|
| doi | https://doi.org/10.1038/s41524-023-01080-x |
| ids.doi | https://doi.org/10.1038/s41524-023-01080-x |
| ids.mag | 3161424953 |
| ids.openalex | https://openalex.org/W3161424953 |
| fwci | 0.86992207 |
| type | article |
| title | End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design |
| biblio.issue | 1 |
| biblio.volume | 9 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10245 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.984000027179718 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2504 |
| topics[0].subfield.display_name | Electronic, Optical and Magnetic Materials |
| topics[0].display_name | Metamaterials and Metasurfaces Applications |
| topics[1].id | https://openalex.org/T10739 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9613999724388123 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Electromagnetic Scattering and Analysis |
| topics[2].id | https://openalex.org/T11471 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.958899974822998 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Block Copolymer Self-Assembly |
| is_xpac | False |
| apc_list.value | 2890 |
| apc_list.currency | USD |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2890 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C202615002 |
| concepts[0].level | 2 |
| concepts[0].score | 0.84229975938797 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q783507 |
| concepts[0].display_name | Differentiable function |
| concepts[1].id | https://openalex.org/C207467116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6609864234924316 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[1].display_name | Inverse |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5787041783332825 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C459310 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5295014381408691 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[3].display_name | Computational science |
| concepts[4].id | https://openalex.org/C43521106 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5146971344947815 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[4].display_name | Pipeline (software) |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3632790744304657 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.20623430609703064 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.10012799501419067 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09559136629104614 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/differentiable-function |
| keywords[0].score | 0.84229975938797 |
| keywords[0].display_name | Differentiable function |
| keywords[1].id | https://openalex.org/keywords/inverse |
| keywords[1].score | 0.6609864234924316 |
| keywords[1].display_name | Inverse |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5787041783332825 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/computational-science |
| keywords[3].score | 0.5295014381408691 |
| keywords[3].display_name | Computational science |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.5146971344947815 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.3632790744304657 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.20623430609703064 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.10012799501419067 |
| keywords[7].display_name | Mathematical analysis |
| keywords[8].id | https://openalex.org/keywords/geometry |
| keywords[8].score | 0.09559136629104614 |
| keywords[8].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1038/s41524-023-01080-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232664 |
| locations[0].source.issn | 2057-3960 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2057-3960 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | npj Computational Materials |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41524-023-01080-x.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | npj Computational Materials |
| locations[0].landing_page_url | https://doi.org/10.1038/s41524-023-01080-x |
| locations[1].id | pmh:oai:doaj.org/article:e0cf614073db4f688c418c09a8e903a8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | npj Computational Materials, Vol 9, Iss 1, Pp 1-12 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/e0cf614073db4f688c418c09a8e903a8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061818383 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4899-9998 |
| authorships[0].author.display_name | Han Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | SOlids inFormaTics AI-Laboratory (SOFT-AI-Lab), College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Han Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | SOlids inFormaTics AI-Laboratory (SOFT-AI-Lab), College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China |
| authorships[1].author.id | https://openalex.org/A5100350522 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7019-3379 |
| authorships[1].author.display_name | Yuhan Liu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuhan Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[2].author.id | https://openalex.org/A5100667665 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7756-9797 |
| authorships[2].author.display_name | Kevin Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[2].affiliations[0].raw_affiliation_string | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[2].institutions[0].id | https://openalex.org/I161318765 |
| authorships[2].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Los Angeles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kevin Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[3].author.id | https://openalex.org/A5114005513 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhangji Zhao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[3].affiliations[0].raw_affiliation_string | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[3].institutions[0].id | https://openalex.org/I161318765 |
| authorships[3].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Los Angeles |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhangji Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[4].author.id | https://openalex.org/A5070645440 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1909-9226 |
| authorships[4].author.display_name | Samuel S. Schoenholz |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[4].affiliations[0].raw_affiliation_string | Google Research, Brain Team, Mountain View, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[4].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Google (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Samuel S. Schoenholz |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Google Research, Brain Team, Mountain View, CA, USA |
| authorships[5].author.id | https://openalex.org/A5065360819 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0524-2837 |
| authorships[5].author.display_name | Ekin D. Cubuk |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[5].affiliations[0].raw_affiliation_string | Google Research, Brain Team, Mountain View, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[5].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Google (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ekin D. Cubuk |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Google Research, Brain Team, Mountain View, CA, USA |
| authorships[6].author.id | https://openalex.org/A5084229134 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6188-1134 |
| authorships[6].author.display_name | Puneet Gupta |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[6].institutions[0].id | https://openalex.org/I161318765 |
| authorships[6].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of California, Los Angeles |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Puneet Gupta |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[7].author.id | https://openalex.org/A5032462770 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4600-0631 |
| authorships[7].author.display_name | Mathieu Bauchy |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[7].affiliations[0].raw_affiliation_string | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| authorships[7].institutions[0].id | https://openalex.org/I161318765 |
| authorships[7].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of California, Los Angeles |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Mathieu Bauchy |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41524-023-01080-x.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10245 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.984000027179718 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2504 |
| primary_topic.subfield.display_name | Electronic, Optical and Magnetic Materials |
| primary_topic.display_name | Metamaterials and Metasurfaces Applications |
| related_works | https://openalex.org/W4285277090, https://openalex.org/W4327738859, https://openalex.org/W2348722996, https://openalex.org/W2334570605, https://openalex.org/W3181683615, https://openalex.org/W4286826125, https://openalex.org/W1633485514, https://openalex.org/W1980454230, https://openalex.org/W2300851791, https://openalex.org/W1604739066 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1038/s41524-023-01080-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232664 |
| best_oa_location.source.issn | 2057-3960 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2057-3960 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | npj Computational Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41524-023-01080-x.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | npj Computational Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41524-023-01080-x |
| primary_location.id | doi:10.1038/s41524-023-01080-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232664 |
| primary_location.source.issn | 2057-3960 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2057-3960 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | npj Computational Materials |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41524-023-01080-x.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | npj Computational Materials |
| primary_location.landing_page_url | https://doi.org/10.1038/s41524-023-01080-x |
| publication_date | 2023-07-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4244402757, https://openalex.org/W2338402873, https://openalex.org/W2755878341, https://openalex.org/W2131686485, https://openalex.org/W2883583109, https://openalex.org/W3007964032, https://openalex.org/W3016719477, https://openalex.org/W2019465613, https://openalex.org/W1981276685, https://openalex.org/W3000404031, https://openalex.org/W2983301919, https://openalex.org/W2948978827, https://openalex.org/W2997100726, https://openalex.org/W2803281408, https://openalex.org/W2970971581, https://openalex.org/W2478429860, https://openalex.org/W2271840356, https://openalex.org/W2995309349, https://openalex.org/W2968042644, https://openalex.org/W3161424953, https://openalex.org/W2017951766, https://openalex.org/W2962914733, https://openalex.org/W3176818990, https://openalex.org/W2996094368, https://openalex.org/W2983490771, https://openalex.org/W4380874786, https://openalex.org/W2970507526, https://openalex.org/W2119424580, https://openalex.org/W3144288090, https://openalex.org/W2088704502, https://openalex.org/W2094145140, https://openalex.org/W2726135726, https://openalex.org/W2062904068, https://openalex.org/W1996994784, https://openalex.org/W2066991705, https://openalex.org/W2808028132, https://openalex.org/W3151820525, https://openalex.org/W2573137292, https://openalex.org/W2041749499, https://openalex.org/W3103651685, https://openalex.org/W2899971035, https://openalex.org/W3101694814, https://openalex.org/W2966059687, https://openalex.org/W2891122218, https://openalex.org/W2099471712 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 48, 57, 89 |
| abstract_inverted_index.an | 13, 95, 101 |
| abstract_inverted_index.at | 11 |
| abstract_inverted_index.by | 30, 66 |
| abstract_inverted_index.in | 130 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.of | 37, 43, 47, 115, 122 |
| abstract_inverted_index.on | 70, 100 |
| abstract_inverted_index.to | 16, 23, 79, 86, 144 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.and | 35 |
| abstract_inverted_index.are | 128, 133 |
| abstract_inverted_index.for | 136 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.its | 17, 80 |
| abstract_inverted_index.the | 41, 44, 82, 113 |
| abstract_inverted_index.This | 140 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.cost | 34 |
| abstract_inverted_index.deep | 90, 131 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.high | 32 |
| abstract_inverted_index.lack | 36 |
| abstract_inverted_index.that | 62, 73 |
| abstract_inverted_index.they | 127 |
| abstract_inverted_index.this | 108 |
| abstract_inverted_index.used | 85 |
| abstract_inverted_index.Here, | 39 |
| abstract_inverted_index.based | 99 |
| abstract_inverted_index.excel | 10 |
| abstract_inverted_index.holds | 142 |
| abstract_inverted_index.input | 14, 103 |
| abstract_inverted_index.power | 114 |
| abstract_inverted_index.their | 20, 31 |
| abstract_inverted_index.these | 64 |
| abstract_inverted_index.train | 88 |
| abstract_inverted_index.units | 118 |
| abstract_inverted_index.which | 93 |
| abstract_inverted_index.Thanks | 78 |
| abstract_inverted_index.chips, | 124 |
| abstract_inverted_index.curve. | 106 |
| abstract_inverted_index.design | 25, 46, 60, 110 |
| abstract_inverted_index.direct | 21 |
| abstract_inverted_index.enough | 135 |
| abstract_inverted_index.family | 121 |
| abstract_inverted_index.matrix | 50, 98 |
| abstract_inverted_index.model, | 92 |
| abstract_inverted_index.output | 18 |
| abstract_inverted_index.porous | 49, 97 |
| abstract_inverted_index.taking | 40 |
| abstract_inverted_index.tensor | 116 |
| abstract_inverted_index.which, | 125 |
| abstract_inverted_index.design. | 6, 148 |
| abstract_inverted_index.example | 42 |
| abstract_inverted_index.inverse | 24, 45, 59, 109, 146 |
| abstract_inverted_index.limited | 29 |
| abstract_inverted_index.mapping | 12 |
| abstract_inverted_index.optimal | 96 |
| abstract_inverted_index.outputs | 94 |
| abstract_inverted_index.promise | 143 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 7 |
| abstract_inverted_index.although | 8, 126 |
| abstract_inverted_index.approach | 141 |
| abstract_inverted_index.directly | 87 |
| abstract_inverted_index.emerging | 120 |
| abstract_inverted_index.flexible | 134 |
| abstract_inverted_index.isotherm | 105 |
| abstract_inverted_index.material | 5, 15 |
| abstract_inverted_index.pipeline | 111 |
| abstract_inverted_index.platform | 72 |
| abstract_inverted_index.sorption | 53, 104 |
| abstract_inverted_index.targeted | 52 |
| abstract_inverted_index.Numerical | 1 |
| abstract_inverted_index.addresses | 63 |
| abstract_inverted_index.arbitrary | 102 |
| abstract_inverted_index.automated | 75 |
| abstract_inverted_index.computing | 33 |
| abstract_inverted_index.dedicated | 123 |
| abstract_inverted_index.featuring | 51 |
| abstract_inverted_index.framework | 61 |
| abstract_inverted_index.intensive | 137 |
| abstract_inverted_index.introduce | 56 |
| abstract_inverted_index.isotherm, | 54 |
| abstract_inverted_index.learning, | 132 |
| abstract_inverted_index.leverages | 74, 112 |
| abstract_inverted_index.materials | 147 |
| abstract_inverted_index.property, | 19 |
| abstract_inverted_index.(TPU)—an | 119 |
| abstract_inverted_index.TensorFlow | 71 |
| abstract_inverted_index.accelerate | 145 |
| abstract_inverted_index.end-to-end | 76 |
| abstract_inverted_index.generative | 91 |
| abstract_inverted_index.processing | 117 |
| abstract_inverted_index.scientific | 138 |
| abstract_inverted_index.simulation | 69, 83 |
| abstract_inverted_index.application | 22 |
| abstract_inverted_index.challenges, | 65 |
| abstract_inverted_index.programming | 67 |
| abstract_inverted_index.simulations | 2, 9 |
| abstract_inverted_index.specialized | 129 |
| abstract_inverted_index.Importantly, | 107 |
| abstract_inverted_index.simulations. | 139 |
| abstract_inverted_index.computational | 58 |
| abstract_inverted_index.traditionally | 27 |
| abstract_inverted_index.differentiable | 68 |
| abstract_inverted_index.revolutionized | 4 |
| abstract_inverted_index.differentiation. | 77 |
| abstract_inverted_index.differentiability, | 81 |
| abstract_inverted_index.differentiability. | 38 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5061818383 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I24185976 |
| citation_normalized_percentile.value | 0.64605482 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |