End-to-End RGB-IR Joint Image Compression With Channel-wise Cross-modality Entropy Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.21851
RGB-IR(RGB-Infrared) image pairs are frequently applied simultaneously in various applications like intelligent surveillance. However, as the number of modalities increases, the required data storage and transmission costs also double. Therefore, efficient RGB-IR data compression is essential. This work proposes a joint compression framework for RGB-IR image pair. Specifically, to fully utilize cross-modality prior information for accurate context probability modeling within and between modalities, we propose a Channel-wise Cross-modality Entropy Model (CCEM). Among CCEM, a Low-frequency Context Extraction Block (LCEB) and a Low-frequency Context Fusion Block (LCFB) are designed for extracting and aggregating the global low-frequency information from both modalities, which assist the model in predicting entropy parameters more accurately. Experimental results demonstrate that our approach outperforms existing RGB-IR image pair and single-modality compression methods on LLVIP and KAIST datasets. For instance, the proposed framework achieves a 23.1% bit rate saving on LLVIP dataset compared to the state-of-the-art RGB-IR image codec presented at CVPR 2022.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.21851
- https://arxiv.org/pdf/2506.21851
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416260482
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416260482Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.21851Digital Object Identifier
- Title
-
End-to-End RGB-IR Joint Image Compression With Channel-wise Cross-modality Entropy ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-27Full publication date if available
- Authors
-
Haofeng Wang, Fangtao Zhou, Qi Zhang, Zeyuan Chen, Enxu Zhang, Xiaofeng HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.21851Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.21851Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.21851Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416260482 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.21851 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.21851 |
| ids.openalex | https://openalex.org/W4416260482 |
| fwci | |
| type | preprint |
| title | End-to-End RGB-IR Joint Image Compression With Channel-wise Cross-modality Entropy Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.21851 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.21851 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.21851 |
| locations[1].id | doi:10.48550/arxiv.2506.21851 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.21851 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101946477 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5865-263X |
| authorships[0].author.display_name | Haofeng Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Haofeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112977554 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fangtao Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Fangtao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100784844 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1037-1361 |
| authorships[2].author.display_name | Qi Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Qi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100313717 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-4504-7108 |
| authorships[3].author.display_name | Zeyuan Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Zeyuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058091073 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Enxu Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Enci |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042072125 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2082-5742 |
| authorships[5].author.display_name | Xiaofeng Huang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Huang, Xiaofeng |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.21851 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | End-to-End RGB-IR Joint Image Compression With Channel-wise Cross-modality Entropy Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:37:08.065477 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.21851 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.21851 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.21851 |
| primary_location.id | pmh:oai:arXiv.org:2506.21851 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.21851 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.21851 |
| publication_date | 2025-06-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 65, 73, 80, 135 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.at | 151 |
| abstract_inverted_index.in | 7, 103 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.of | 17 |
| abstract_inverted_index.on | 124, 140 |
| abstract_inverted_index.to | 48, 144 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.For | 129 |
| abstract_inverted_index.and | 24, 60, 79, 90, 120, 126 |
| abstract_inverted_index.are | 3, 86 |
| abstract_inverted_index.bit | 137 |
| abstract_inverted_index.for | 43, 54, 88 |
| abstract_inverted_index.our | 113 |
| abstract_inverted_index.the | 15, 20, 92, 101, 131, 145 |
| abstract_inverted_index.CVPR | 152 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.also | 27 |
| abstract_inverted_index.both | 97 |
| abstract_inverted_index.data | 22, 32 |
| abstract_inverted_index.from | 96 |
| abstract_inverted_index.like | 10 |
| abstract_inverted_index.more | 107 |
| abstract_inverted_index.pair | 119 |
| abstract_inverted_index.rate | 138 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.work | 37 |
| abstract_inverted_index.2022. | 153 |
| abstract_inverted_index.23.1% | 136 |
| abstract_inverted_index.Among | 71 |
| abstract_inverted_index.Block | 77, 84 |
| abstract_inverted_index.CCEM, | 72 |
| abstract_inverted_index.KAIST | 127 |
| abstract_inverted_index.LLVIP | 125, 141 |
| abstract_inverted_index.Model | 69 |
| abstract_inverted_index.codec | 149 |
| abstract_inverted_index.costs | 26 |
| abstract_inverted_index.fully | 49 |
| abstract_inverted_index.image | 1, 45, 118, 148 |
| abstract_inverted_index.joint | 40 |
| abstract_inverted_index.model | 102 |
| abstract_inverted_index.pair. | 46 |
| abstract_inverted_index.pairs | 2 |
| abstract_inverted_index.prior | 52 |
| abstract_inverted_index.which | 99 |
| abstract_inverted_index.(LCEB) | 78 |
| abstract_inverted_index.(LCFB) | 85 |
| abstract_inverted_index.Fusion | 83 |
| abstract_inverted_index.RGB-IR | 31, 44, 117, 147 |
| abstract_inverted_index.assist | 100 |
| abstract_inverted_index.global | 93 |
| abstract_inverted_index.number | 16 |
| abstract_inverted_index.saving | 139 |
| abstract_inverted_index.within | 59 |
| abstract_inverted_index.(CCEM). | 70 |
| abstract_inverted_index.Context | 75, 82 |
| abstract_inverted_index.Entropy | 68 |
| abstract_inverted_index.applied | 5 |
| abstract_inverted_index.between | 61 |
| abstract_inverted_index.context | 56 |
| abstract_inverted_index.dataset | 142 |
| abstract_inverted_index.double. | 28 |
| abstract_inverted_index.entropy | 105 |
| abstract_inverted_index.methods | 123 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.results | 110 |
| abstract_inverted_index.storage | 23 |
| abstract_inverted_index.utilize | 50 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.accurate | 55 |
| abstract_inverted_index.achieves | 134 |
| abstract_inverted_index.approach | 114 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.designed | 87 |
| abstract_inverted_index.existing | 116 |
| abstract_inverted_index.modeling | 58 |
| abstract_inverted_index.proposed | 132 |
| abstract_inverted_index.proposes | 38 |
| abstract_inverted_index.required | 21 |
| abstract_inverted_index.datasets. | 128 |
| abstract_inverted_index.efficient | 30 |
| abstract_inverted_index.framework | 42, 133 |
| abstract_inverted_index.instance, | 130 |
| abstract_inverted_index.presented | 150 |
| abstract_inverted_index.Extraction | 76 |
| abstract_inverted_index.Therefore, | 29 |
| abstract_inverted_index.essential. | 35 |
| abstract_inverted_index.extracting | 89 |
| abstract_inverted_index.frequently | 4 |
| abstract_inverted_index.increases, | 19 |
| abstract_inverted_index.modalities | 18 |
| abstract_inverted_index.parameters | 106 |
| abstract_inverted_index.predicting | 104 |
| abstract_inverted_index.accurately. | 108 |
| abstract_inverted_index.aggregating | 91 |
| abstract_inverted_index.compression | 33, 41, 122 |
| abstract_inverted_index.demonstrate | 111 |
| abstract_inverted_index.information | 53, 95 |
| abstract_inverted_index.intelligent | 11 |
| abstract_inverted_index.modalities, | 62, 98 |
| abstract_inverted_index.outperforms | 115 |
| abstract_inverted_index.probability | 57 |
| abstract_inverted_index.Channel-wise | 66 |
| abstract_inverted_index.Experimental | 109 |
| abstract_inverted_index.applications | 9 |
| abstract_inverted_index.transmission | 25 |
| abstract_inverted_index.Low-frequency | 74, 81 |
| abstract_inverted_index.Specifically, | 47 |
| abstract_inverted_index.low-frequency | 94 |
| abstract_inverted_index.surveillance. | 12 |
| abstract_inverted_index.Cross-modality | 67 |
| abstract_inverted_index.cross-modality | 51 |
| abstract_inverted_index.simultaneously | 6 |
| abstract_inverted_index.single-modality | 121 |
| abstract_inverted_index.state-of-the-art | 146 |
| abstract_inverted_index.RGB-IR(RGB-Infrared) | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |