Energy-Efficient Protocols and Autonomous Data Management in Wireless Sensor Networks for Real-Time Psychology Class Applications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.58346/jowua.2025.i4.029
This paper introduces an energy-efficient communication structure and an independent data management plan for Wireless Sensor Networks (WSNs) in a real-time psychology class setting. Since the contemporary classroom is becoming highly dependent on the continuous collection of physiological and behavioral data, including engagement tracking, cognitive-load measurement, emotional-state detection, etc., the provision of sustainable, low-power, and self-organizing sensing systems is becoming an urgent issue. The suggested framework incorporates adaptive duty cycling, context-sensitive routing, and lightweight data aggregation to drastically reduce power consumption while preserving high data fidelity and low latency. Real-time preprocessing, noise filtering, and event-driven data prioritization are enabled by an autonomous data management layer backed by edge-level intelligence, ensuring that only valid data is transmitted to the centralized analysis unit. The protocol also includes predictive load balancing to increase network durability and fault resilience when used in dynamic classroom applications. Simulated psychology-class environment experimental assessments show significant enhancements in network lifetime, lower communication overhead, and consistent real-time performance across changes in student activity levels. The paper notes the possibility of intelligent WSN design to support emerging real-time psychological analytics, enabling more responsive, data-driven, and energy-aware learning settings.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.58346/jowua.2025.i4.029
- https://doi.org/10.58346/jowua.2025.i4.029
- OA Status
- bronze
- OpenAlex ID
- https://openalex.org/W7108644724
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108644724Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58346/jowua.2025.i4.029Digital Object Identifier
- Title
-
Energy-Efficient Protocols and Autonomous Data Management in Wireless Sensor Networks for Real-Time Psychology Class ApplicationsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-05Full publication date if available
- Authors
-
Jamila Djumabaeva, Khamid Choriev, Nafisa Nasrullaeva, Djamshid Mirzayev, Dildora Mustafaqulova, Adiba Madiyeva, Rasima Gabdulhakova, Guljakhon JonikulovaList of authors in order
- Landing page
-
https://doi.org/10.58346/jowua.2025.i4.029Publisher landing page
- PDF URL
-
https://doi.org/10.58346/jowua.2025.i4.029Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.58346/jowua.2025.i4.029Direct OA link when available
- Concepts
-
Computer science, Wireless sensor network, Computer network, Distributed computing, Data collection, Resilience (materials science), Data management, Communications protocol, Fidelity, Fault management, Protocol (science), Class (philosophy), Power management, Troubleshooting, Wireless network, Key distribution in wireless sensor networks, Emergency management, Data integrity, Fault tolerance, Wireless, Data sharing, Real-time computing, Data modeling, Big data, Network management, Fault detection and isolation, Application layer, Load balancing (electrical power), Protocol stack, Overhead (engineering), Plan (archaeology), Energy consumption, Energy management, Data lossTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108644724 |
|---|---|
| doi | https://doi.org/10.58346/jowua.2025.i4.029 |
| ids.doi | https://doi.org/10.58346/jowua.2025.i4.029 |
| ids.openalex | https://openalex.org/W7108644724 |
| fwci | 0.0 |
| type | article |
| title | Energy-Efficient Protocols and Autonomous Data Management in Wireless Sensor Networks for Real-Time Psychology Class Applications |
| biblio.issue | 4 |
| biblio.volume | 16 |
| biblio.last_page | 536 |
| biblio.first_page | 522 |
| topics[0].id | https://openalex.org/T14394 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.05240104719996452 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Cognitive Science and Education Research |
| topics[1].id | https://openalex.org/T11902 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.03688020631670952 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| topics[2].id | https://openalex.org/T13353 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.031310662627220154 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3204 |
| topics[2].subfield.display_name | Developmental and Educational Psychology |
| topics[2].display_name | Flow Experience in Various Fields |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7271684408187866 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C24590314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6724584698677063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[1].display_name | Wireless sensor network |
| concepts[2].id | https://openalex.org/C31258907 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4789165258407593 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[2].display_name | Computer network |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46597084403038025 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| concepts[4].id | https://openalex.org/C133462117 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4635024666786194 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[4].display_name | Data collection |
| concepts[5].id | https://openalex.org/C2779585090 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4410196542739868 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3457762 |
| concepts[5].display_name | Resilience (materials science) |
| concepts[6].id | https://openalex.org/C1668388 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4325461685657501 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1149776 |
| concepts[6].display_name | Data management |
| concepts[7].id | https://openalex.org/C12269588 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42259669303894043 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q132364 |
| concepts[7].display_name | Communications protocol |
| concepts[8].id | https://openalex.org/C2776459999 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4207783341407776 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[8].display_name | Fidelity |
| concepts[9].id | https://openalex.org/C108074857 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4032531678676605 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3067360 |
| concepts[9].display_name | Fault management |
| concepts[10].id | https://openalex.org/C2780385302 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3996688425540924 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q367158 |
| concepts[10].display_name | Protocol (science) |
| concepts[11].id | https://openalex.org/C2777212361 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39195942878723145 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[11].display_name | Class (philosophy) |
| concepts[12].id | https://openalex.org/C2778774385 |
| concepts[12].level | 3 |
| concepts[12].score | 0.36418917775154114 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4437810 |
| concepts[12].display_name | Power management |
| concepts[13].id | https://openalex.org/C147494362 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3576297163963318 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2078905 |
| concepts[13].display_name | Troubleshooting |
| concepts[14].id | https://openalex.org/C108037233 |
| concepts[14].level | 3 |
| concepts[14].score | 0.3421904146671295 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11375 |
| concepts[14].display_name | Wireless network |
| concepts[15].id | https://openalex.org/C41971633 |
| concepts[15].level | 4 |
| concepts[15].score | 0.3415262699127197 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q6398155 |
| concepts[15].display_name | Key distribution in wireless sensor networks |
| concepts[16].id | https://openalex.org/C62555980 |
| concepts[16].level | 2 |
| concepts[16].score | 0.33053693175315857 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1460420 |
| concepts[16].display_name | Emergency management |
| concepts[17].id | https://openalex.org/C33762810 |
| concepts[17].level | 2 |
| concepts[17].score | 0.31427013874053955 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q461671 |
| concepts[17].display_name | Data integrity |
| concepts[18].id | https://openalex.org/C63540848 |
| concepts[18].level | 2 |
| concepts[18].score | 0.312112033367157 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3140932 |
| concepts[18].display_name | Fault tolerance |
| concepts[19].id | https://openalex.org/C555944384 |
| concepts[19].level | 2 |
| concepts[19].score | 0.31017398834228516 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[19].display_name | Wireless |
| concepts[20].id | https://openalex.org/C2779965156 |
| concepts[20].level | 3 |
| concepts[20].score | 0.30615630745887756 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5227350 |
| concepts[20].display_name | Data sharing |
| concepts[21].id | https://openalex.org/C79403827 |
| concepts[21].level | 1 |
| concepts[21].score | 0.3033369481563568 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[21].display_name | Real-time computing |
| concepts[22].id | https://openalex.org/C67186912 |
| concepts[22].level | 2 |
| concepts[22].score | 0.30302679538726807 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[22].display_name | Data modeling |
| concepts[23].id | https://openalex.org/C75684735 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2975655794143677 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[23].display_name | Big data |
| concepts[24].id | https://openalex.org/C129763632 |
| concepts[24].level | 2 |
| concepts[24].score | 0.29673755168914795 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1454667 |
| concepts[24].display_name | Network management |
| concepts[25].id | https://openalex.org/C152745839 |
| concepts[25].level | 3 |
| concepts[25].score | 0.29651299118995667 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q5438153 |
| concepts[25].display_name | Fault detection and isolation |
| concepts[26].id | https://openalex.org/C190793597 |
| concepts[26].level | 3 |
| concepts[26].score | 0.28873637318611145 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q189768 |
| concepts[26].display_name | Application layer |
| concepts[27].id | https://openalex.org/C138959212 |
| concepts[27].level | 3 |
| concepts[27].score | 0.2819848954677582 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1806783 |
| concepts[27].display_name | Load balancing (electrical power) |
| concepts[28].id | https://openalex.org/C38601921 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2703247666358948 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q1757693 |
| concepts[28].display_name | Protocol stack |
| concepts[29].id | https://openalex.org/C2779960059 |
| concepts[29].level | 2 |
| concepts[29].score | 0.26007887721061707 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[29].display_name | Overhead (engineering) |
| concepts[30].id | https://openalex.org/C2776505523 |
| concepts[30].level | 2 |
| concepts[30].score | 0.2579742968082428 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q4785468 |
| concepts[30].display_name | Plan (archaeology) |
| concepts[31].id | https://openalex.org/C2780165032 |
| concepts[31].level | 2 |
| concepts[31].score | 0.2573634386062622 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[31].display_name | Energy consumption |
| concepts[32].id | https://openalex.org/C7817414 |
| concepts[32].level | 3 |
| concepts[32].score | 0.25184497237205505 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q1779504 |
| concepts[32].display_name | Energy management |
| concepts[33].id | https://openalex.org/C193519340 |
| concepts[33].level | 2 |
| concepts[33].score | 0.2513751685619354 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q891179 |
| concepts[33].display_name | Data loss |
| keywords[0].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[0].score | 0.6724584698677063 |
| keywords[0].display_name | Wireless sensor network |
| keywords[1].id | https://openalex.org/keywords/data-collection |
| keywords[1].score | 0.4635024666786194 |
| keywords[1].display_name | Data collection |
| keywords[2].id | https://openalex.org/keywords/resilience |
| keywords[2].score | 0.4410196542739868 |
| keywords[2].display_name | Resilience (materials science) |
| keywords[3].id | https://openalex.org/keywords/data-management |
| keywords[3].score | 0.4325461685657501 |
| keywords[3].display_name | Data management |
| keywords[4].id | https://openalex.org/keywords/communications-protocol |
| keywords[4].score | 0.42259669303894043 |
| keywords[4].display_name | Communications protocol |
| keywords[5].id | https://openalex.org/keywords/fidelity |
| keywords[5].score | 0.4207783341407776 |
| keywords[5].display_name | Fidelity |
| keywords[6].id | https://openalex.org/keywords/fault-management |
| keywords[6].score | 0.4032531678676605 |
| keywords[6].display_name | Fault management |
| keywords[7].id | https://openalex.org/keywords/protocol |
| keywords[7].score | 0.3996688425540924 |
| keywords[7].display_name | Protocol (science) |
| keywords[8].id | https://openalex.org/keywords/class |
| keywords[8].score | 0.39195942878723145 |
| keywords[8].display_name | Class (philosophy) |
| keywords[9].id | https://openalex.org/keywords/power-management |
| keywords[9].score | 0.36418917775154114 |
| keywords[9].display_name | Power management |
| language | |
| locations[0].id | doi:10.58346/jowua.2025.i4.029 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738080829 |
| locations[0].source.issn | 2093-5374, 2093-5382 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2093-5374 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Wireless Mobile Networks Ubiquitous Computing and Dependable Applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications |
| locations[0].landing_page_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A4381784094 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jamila Djumabaeva |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jamila Djumabaeva |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Khamid Choriev |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khamid Choriev |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2478583024 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nafisa Nasrullaeva |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nafisa Nasrullaeva |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Djamshid Mirzayev |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Djamshid Mirzayev |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5116969728 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dildora Mustafaqulova |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dildora Mustafaqulova |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A3109054968 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Adiba Madiyeva |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Adiba Madiyeva |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A3025425485 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Rasima Gabdulhakova |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Rasima Gabdulhakova |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Guljakhon Jonikulova |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Guljakhon Jonikulova |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | Energy-Efficient Protocols and Autonomous Data Management in Wireless Sensor Networks for Real-Time Psychology Class Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-05T23:25:22.460635 |
| primary_topic.id | https://openalex.org/T14394 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.05240104719996452 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Cognitive Science and Education Research |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.58346/jowua.2025.i4.029 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738080829 |
| best_oa_location.source.issn | 2093-5374, 2093-5382 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2093-5374 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Wireless Mobile Networks Ubiquitous Computing and Dependable Applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications |
| best_oa_location.landing_page_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| primary_location.id | doi:10.58346/jowua.2025.i4.029 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738080829 |
| primary_location.source.issn | 2093-5374, 2093-5382 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2093-5374 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Wireless Mobile Networks Ubiquitous Computing and Dependable Applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications |
| primary_location.landing_page_url | https://doi.org/10.58346/jowua.2025.i4.029 |
| publication_date | 2025-12-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.an | 3, 8, 60, 100 |
| abstract_inverted_index.by | 99, 106 |
| abstract_inverted_index.in | 18, 137, 149, 161 |
| abstract_inverted_index.is | 28, 58, 114 |
| abstract_inverted_index.of | 36, 51, 170 |
| abstract_inverted_index.on | 32 |
| abstract_inverted_index.to | 76, 116, 128, 174 |
| abstract_inverted_index.The | 63, 121, 165 |
| abstract_inverted_index.WSN | 172 |
| abstract_inverted_index.and | 7, 38, 54, 72, 86, 93, 132, 155, 184 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.low | 87 |
| abstract_inverted_index.the | 25, 33, 49, 117, 168 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 123 |
| abstract_inverted_index.data | 10, 74, 84, 95, 102, 113 |
| abstract_inverted_index.duty | 68 |
| abstract_inverted_index.high | 83 |
| abstract_inverted_index.load | 126 |
| abstract_inverted_index.more | 181 |
| abstract_inverted_index.only | 111 |
| abstract_inverted_index.plan | 12 |
| abstract_inverted_index.show | 146 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.used | 136 |
| abstract_inverted_index.when | 135 |
| abstract_inverted_index.Since | 24 |
| abstract_inverted_index.class | 22 |
| abstract_inverted_index.data, | 40 |
| abstract_inverted_index.etc., | 48 |
| abstract_inverted_index.fault | 133 |
| abstract_inverted_index.layer | 104 |
| abstract_inverted_index.lower | 152 |
| abstract_inverted_index.noise | 91 |
| abstract_inverted_index.notes | 167 |
| abstract_inverted_index.paper | 1, 166 |
| abstract_inverted_index.power | 79 |
| abstract_inverted_index.unit. | 120 |
| abstract_inverted_index.valid | 112 |
| abstract_inverted_index.while | 81 |
| abstract_inverted_index.(WSNs) | 17 |
| abstract_inverted_index.Sensor | 15 |
| abstract_inverted_index.across | 159 |
| abstract_inverted_index.backed | 105 |
| abstract_inverted_index.design | 173 |
| abstract_inverted_index.highly | 30 |
| abstract_inverted_index.issue. | 62 |
| abstract_inverted_index.reduce | 78 |
| abstract_inverted_index.urgent | 61 |
| abstract_inverted_index.changes | 160 |
| abstract_inverted_index.dynamic | 138 |
| abstract_inverted_index.enabled | 98 |
| abstract_inverted_index.levels. | 164 |
| abstract_inverted_index.network | 130, 150 |
| abstract_inverted_index.sensing | 56 |
| abstract_inverted_index.student | 162 |
| abstract_inverted_index.support | 175 |
| abstract_inverted_index.systems | 57 |
| abstract_inverted_index.Networks | 16 |
| abstract_inverted_index.Wireless | 14 |
| abstract_inverted_index.activity | 163 |
| abstract_inverted_index.adaptive | 67 |
| abstract_inverted_index.analysis | 119 |
| abstract_inverted_index.becoming | 29, 59 |
| abstract_inverted_index.cycling, | 69 |
| abstract_inverted_index.emerging | 176 |
| abstract_inverted_index.enabling | 180 |
| abstract_inverted_index.ensuring | 109 |
| abstract_inverted_index.fidelity | 85 |
| abstract_inverted_index.includes | 124 |
| abstract_inverted_index.increase | 129 |
| abstract_inverted_index.latency. | 88 |
| abstract_inverted_index.learning | 186 |
| abstract_inverted_index.protocol | 122 |
| abstract_inverted_index.routing, | 71 |
| abstract_inverted_index.setting. | 23 |
| abstract_inverted_index.Real-time | 89 |
| abstract_inverted_index.Simulated | 141 |
| abstract_inverted_index.balancing | 127 |
| abstract_inverted_index.classroom | 27, 139 |
| abstract_inverted_index.dependent | 31 |
| abstract_inverted_index.framework | 65 |
| abstract_inverted_index.including | 41 |
| abstract_inverted_index.lifetime, | 151 |
| abstract_inverted_index.overhead, | 154 |
| abstract_inverted_index.provision | 50 |
| abstract_inverted_index.real-time | 20, 157, 177 |
| abstract_inverted_index.settings. | 187 |
| abstract_inverted_index.structure | 6 |
| abstract_inverted_index.suggested | 64 |
| abstract_inverted_index.tracking, | 43 |
| abstract_inverted_index.analytics, | 179 |
| abstract_inverted_index.autonomous | 101 |
| abstract_inverted_index.behavioral | 39 |
| abstract_inverted_index.collection | 35 |
| abstract_inverted_index.consistent | 156 |
| abstract_inverted_index.continuous | 34 |
| abstract_inverted_index.detection, | 47 |
| abstract_inverted_index.durability | 131 |
| abstract_inverted_index.edge-level | 107 |
| abstract_inverted_index.engagement | 42 |
| abstract_inverted_index.filtering, | 92 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.low-power, | 53 |
| abstract_inverted_index.management | 11, 103 |
| abstract_inverted_index.predictive | 125 |
| abstract_inverted_index.preserving | 82 |
| abstract_inverted_index.psychology | 21 |
| abstract_inverted_index.resilience | 134 |
| abstract_inverted_index.aggregation | 75 |
| abstract_inverted_index.assessments | 145 |
| abstract_inverted_index.centralized | 118 |
| abstract_inverted_index.consumption | 80 |
| abstract_inverted_index.drastically | 77 |
| abstract_inverted_index.environment | 143 |
| abstract_inverted_index.independent | 9 |
| abstract_inverted_index.intelligent | 171 |
| abstract_inverted_index.lightweight | 73 |
| abstract_inverted_index.performance | 158 |
| abstract_inverted_index.possibility | 169 |
| abstract_inverted_index.responsive, | 182 |
| abstract_inverted_index.significant | 147 |
| abstract_inverted_index.transmitted | 115 |
| abstract_inverted_index.contemporary | 26 |
| abstract_inverted_index.data-driven, | 183 |
| abstract_inverted_index.energy-aware | 185 |
| abstract_inverted_index.enhancements | 148 |
| abstract_inverted_index.event-driven | 94 |
| abstract_inverted_index.experimental | 144 |
| abstract_inverted_index.incorporates | 66 |
| abstract_inverted_index.measurement, | 45 |
| abstract_inverted_index.sustainable, | 52 |
| abstract_inverted_index.applications. | 140 |
| abstract_inverted_index.communication | 5, 153 |
| abstract_inverted_index.intelligence, | 108 |
| abstract_inverted_index.physiological | 37 |
| abstract_inverted_index.psychological | 178 |
| abstract_inverted_index.cognitive-load | 44 |
| abstract_inverted_index.preprocessing, | 90 |
| abstract_inverted_index.prioritization | 96 |
| abstract_inverted_index.emotional-state | 46 |
| abstract_inverted_index.self-organizing | 55 |
| abstract_inverted_index.energy-efficient | 4 |
| abstract_inverted_index.psychology-class | 142 |
| abstract_inverted_index.context-sensitive | 70 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.79733526 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |