Energy-Efficient Resource Management in Microservices-based Fog and Edge Computing: State-of-the-Art and Future Directions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.04093
The exponential growth of Internet of Things (IoT) devices has intensified the demand for efficient and responsive services. To address this demand, fog and edge computing have emerged as distributed paradigms that bring computational resources closer to end users, reducing latency, bandwidth limitations, and energy consumption. However, these paradigms present challenges in resource management due to resource constraints, computational heterogeneity, dynamic workloads, and diverse Quality of Service (QoS) requirements. This paper presents a comprehensive survey of state-of-the-art resource management strategies in microservices-based fog and edge computing, focusing on energy-efficient solutions. We systematically review and classify more than 136 studies (2020-2024) into five key subdomains: service placement, resource provisioning, task scheduling and offloading, resource allocation, and instance selection. Our categorization is based on optimization techniques, targeted objectives, and the strengths and limitations of each approach. In addition, we examine existing surveys and identify unresolved challenges and gaps in the literature. By highlighting the lack of synergy among fundamental resource management components, we outline promising research directions leveraging AI-driven optimization, quantum computing, and serverless computing. This survey serves as a comprehensive reference for researchers and practitioners by providing a unified and energy-aware perspective on resource management in microservices-based fog and edge computing, paving the way for more integrated, efficient, and sustainable future solutions.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.04093
- https://arxiv.org/pdf/2512.04093
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417086401
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417086401Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.04093Digital Object Identifier
- Title
-
Energy-Efficient Resource Management in Microservices-based Fog and Edge Computing: State-of-the-Art and Future DirectionsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-18Full publication date if available
- Authors
-
Sadoon Azizi, Rajkumar BuyyaList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.04093Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.04093Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.04093Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417086401 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.04093 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.04093 |
| ids.openalex | https://openalex.org/W4417086401 |
| fwci | |
| type | preprint |
| title | Energy-Efficient Resource Management in Microservices-based Fog and Edge Computing: State-of-the-Art and Future Directions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.04093 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.04093 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.04093 |
| locations[1].id | doi:10.48550/arxiv.2512.04093 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.04093 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009471859 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5788-0438 |
| authorships[0].author.display_name | Sadoon Azizi |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Azizi, Sadoon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014716105 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9754-6496 |
| authorships[1].author.display_name | Rajkumar Buyya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Buyya, Rajkumar |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.04093 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-06T00:00:00 |
| display_name | Energy-Efficient Resource Management in Microservices-based Fog and Edge Computing: State-of-the-Art and Future Directions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T09:55:28.815639 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.04093 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.04093 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.04093 |
| primary_location.id | pmh:oai:arXiv.org:2512.04093 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.04093 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.04093 |
| publication_date | 2025-11-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 72, 177, 186 |
| abstract_inverted_index.By | 149 |
| abstract_inverted_index.In | 134 |
| abstract_inverted_index.To | 18 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.as | 28, 176 |
| abstract_inverted_index.by | 184 |
| abstract_inverted_index.in | 51, 80, 146, 194 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 3, 5, 65, 75, 131, 153 |
| abstract_inverted_index.on | 87, 121, 191 |
| abstract_inverted_index.to | 36, 55 |
| abstract_inverted_index.we | 136, 160 |
| abstract_inverted_index.136 | 97 |
| abstract_inverted_index.Our | 117 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 15, 23, 43, 62, 83, 93, 110, 114, 126, 129, 140, 144, 170, 182, 188, 197, 207 |
| abstract_inverted_index.due | 54 |
| abstract_inverted_index.end | 37 |
| abstract_inverted_index.fog | 22, 82, 196 |
| abstract_inverted_index.for | 13, 180, 203 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.key | 102 |
| abstract_inverted_index.the | 11, 127, 147, 151, 201 |
| abstract_inverted_index.way | 202 |
| abstract_inverted_index.This | 69, 173 |
| abstract_inverted_index.each | 132 |
| abstract_inverted_index.edge | 24, 84, 198 |
| abstract_inverted_index.five | 101 |
| abstract_inverted_index.gaps | 145 |
| abstract_inverted_index.have | 26 |
| abstract_inverted_index.into | 100 |
| abstract_inverted_index.lack | 152 |
| abstract_inverted_index.more | 95, 204 |
| abstract_inverted_index.task | 108 |
| abstract_inverted_index.than | 96 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.this | 20 |
| abstract_inverted_index.(IoT) | 7 |
| abstract_inverted_index.(QoS) | 67 |
| abstract_inverted_index.among | 155 |
| abstract_inverted_index.based | 120 |
| abstract_inverted_index.bring | 32 |
| abstract_inverted_index.paper | 70 |
| abstract_inverted_index.these | 47 |
| abstract_inverted_index.Things | 6 |
| abstract_inverted_index.closer | 35 |
| abstract_inverted_index.demand | 12 |
| abstract_inverted_index.energy | 44 |
| abstract_inverted_index.future | 209 |
| abstract_inverted_index.growth | 2 |
| abstract_inverted_index.paving | 200 |
| abstract_inverted_index.review | 92 |
| abstract_inverted_index.serves | 175 |
| abstract_inverted_index.survey | 74, 174 |
| abstract_inverted_index.users, | 38 |
| abstract_inverted_index.Quality | 64 |
| abstract_inverted_index.Service | 66 |
| abstract_inverted_index.address | 19 |
| abstract_inverted_index.demand, | 21 |
| abstract_inverted_index.devices | 8 |
| abstract_inverted_index.diverse | 63 |
| abstract_inverted_index.dynamic | 60 |
| abstract_inverted_index.emerged | 27 |
| abstract_inverted_index.examine | 137 |
| abstract_inverted_index.outline | 161 |
| abstract_inverted_index.present | 49 |
| abstract_inverted_index.quantum | 168 |
| abstract_inverted_index.service | 104 |
| abstract_inverted_index.studies | 98 |
| abstract_inverted_index.surveys | 139 |
| abstract_inverted_index.synergy | 154 |
| abstract_inverted_index.unified | 187 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.Internet | 4 |
| abstract_inverted_index.classify | 94 |
| abstract_inverted_index.existing | 138 |
| abstract_inverted_index.focusing | 86 |
| abstract_inverted_index.identify | 141 |
| abstract_inverted_index.instance | 115 |
| abstract_inverted_index.latency, | 40 |
| abstract_inverted_index.presents | 71 |
| abstract_inverted_index.reducing | 39 |
| abstract_inverted_index.research | 163 |
| abstract_inverted_index.resource | 52, 56, 77, 106, 112, 157, 192 |
| abstract_inverted_index.targeted | 124 |
| abstract_inverted_index.AI-driven | 166 |
| abstract_inverted_index.addition, | 135 |
| abstract_inverted_index.approach. | 133 |
| abstract_inverted_index.bandwidth | 41 |
| abstract_inverted_index.computing | 25 |
| abstract_inverted_index.efficient | 14 |
| abstract_inverted_index.paradigms | 30, 48 |
| abstract_inverted_index.promising | 162 |
| abstract_inverted_index.providing | 185 |
| abstract_inverted_index.reference | 179 |
| abstract_inverted_index.resources | 34 |
| abstract_inverted_index.services. | 17 |
| abstract_inverted_index.strengths | 128 |
| abstract_inverted_index.challenges | 50, 143 |
| abstract_inverted_index.computing, | 85, 169, 199 |
| abstract_inverted_index.computing. | 172 |
| abstract_inverted_index.directions | 164 |
| abstract_inverted_index.efficient, | 206 |
| abstract_inverted_index.leveraging | 165 |
| abstract_inverted_index.management | 53, 78, 158, 193 |
| abstract_inverted_index.placement, | 105 |
| abstract_inverted_index.responsive | 16 |
| abstract_inverted_index.scheduling | 109 |
| abstract_inverted_index.selection. | 116 |
| abstract_inverted_index.serverless | 171 |
| abstract_inverted_index.solutions. | 89, 210 |
| abstract_inverted_index.strategies | 79 |
| abstract_inverted_index.unresolved | 142 |
| abstract_inverted_index.workloads, | 61 |
| abstract_inverted_index.(2020-2024) | 99 |
| abstract_inverted_index.allocation, | 113 |
| abstract_inverted_index.components, | 159 |
| abstract_inverted_index.distributed | 29 |
| abstract_inverted_index.exponential | 1 |
| abstract_inverted_index.fundamental | 156 |
| abstract_inverted_index.integrated, | 205 |
| abstract_inverted_index.intensified | 10 |
| abstract_inverted_index.limitations | 130 |
| abstract_inverted_index.literature. | 148 |
| abstract_inverted_index.objectives, | 125 |
| abstract_inverted_index.offloading, | 111 |
| abstract_inverted_index.perspective | 190 |
| abstract_inverted_index.researchers | 181 |
| abstract_inverted_index.subdomains: | 103 |
| abstract_inverted_index.sustainable | 208 |
| abstract_inverted_index.techniques, | 123 |
| abstract_inverted_index.constraints, | 57 |
| abstract_inverted_index.consumption. | 45 |
| abstract_inverted_index.energy-aware | 189 |
| abstract_inverted_index.highlighting | 150 |
| abstract_inverted_index.limitations, | 42 |
| abstract_inverted_index.optimization | 122 |
| abstract_inverted_index.comprehensive | 73, 178 |
| abstract_inverted_index.computational | 33, 58 |
| abstract_inverted_index.optimization, | 167 |
| abstract_inverted_index.practitioners | 183 |
| abstract_inverted_index.provisioning, | 107 |
| abstract_inverted_index.requirements. | 68 |
| abstract_inverted_index.categorization | 118 |
| abstract_inverted_index.heterogeneity, | 59 |
| abstract_inverted_index.systematically | 91 |
| abstract_inverted_index.energy-efficient | 88 |
| abstract_inverted_index.state-of-the-art | 76 |
| abstract_inverted_index.microservices-based | 81, 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |