Energy optimization for wireless sensor network using minimum redundancy maximum relevance feature selection and classification techniques Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.7717/peerj-cs.1997
In wireless sensor networks (WSN), conserving energy is usually a basic issue, and several approaches are applied to optimize energy consumption. In this article, we adopt feature selection approaches by using minimum redundancy maximum relevance (MRMR) as a feature selection technique to minimize the number of sensors thereby conserving energy. MRMR ranks the sensors according to their significance. The selected features are then classified by different types of classifiers; SVM with linear kernel classifier, naïve Bayes classifier, and k-nearest neighbors classifier (KNN) to compare accuracy values. The simulation results illustrated an improvement in the lifetime extension factor of sensors and showed that the KNN classifier gives better results than the naïve Bayes and SVM classifier.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7717/peerj-cs.1997
- OA Status
- gold
- Cited By
- 7
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396519114
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396519114Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7717/peerj-cs.1997Digital Object Identifier
- Title
-
Energy optimization for wireless sensor network using minimum redundancy maximum relevance feature selection and classification techniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-30Full publication date if available
- Authors
-
Muteeah Aljawarneh, Rim Hamdaoui, Ahmed Zouinkhi, Someah Alangari, Mohamed Naceur AbdelkrimList of authors in order
- Landing page
-
https://doi.org/10.7717/peerj-cs.1997Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7717/peerj-cs.1997Direct OA link when available
- Concepts
-
Computer science, Feature selection, Support vector machine, Naive Bayes classifier, Classifier (UML), Artificial intelligence, Pattern recognition (psychology), Wireless sensor network, Redundancy (engineering), Quadratic classifier, Bayes classifier, Bayes' theorem, Margin classifier, Data mining, Machine learning, Bayesian probability, Computer network, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396519114 |
|---|---|
| doi | https://doi.org/10.7717/peerj-cs.1997 |
| ids.doi | https://doi.org/10.7717/peerj-cs.1997 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38855198 |
| ids.openalex | https://openalex.org/W4396519114 |
| fwci | 5.85806271 |
| type | article |
| title | Energy optimization for wireless sensor network using minimum redundancy maximum relevance feature selection and classification techniques |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | e1997 |
| biblio.first_page | e1997 |
| topics[0].id | https://openalex.org/T10080 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Energy Efficient Wireless Sensor Networks |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9674000144004822 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T10100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9628999829292297 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list.value | 1395 |
| apc_list.currency | USD |
| apc_list.value_usd | 1395 |
| apc_paid.value | 1395 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1395 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.693115234375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6928319931030273 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6844611763954163 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C52001869 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6647958159446716 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[3].display_name | Naive Bayes classifier |
| concepts[4].id | https://openalex.org/C95623464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6577694416046143 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[4].display_name | Classifier (UML) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6232526302337646 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6086058616638184 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C24590314 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5415918827056885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[7].display_name | Wireless sensor network |
| concepts[8].id | https://openalex.org/C152124472 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5068259835243225 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[8].display_name | Redundancy (engineering) |
| concepts[9].id | https://openalex.org/C52620605 |
| concepts[9].level | 3 |
| concepts[9].score | 0.49091559648513794 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7268357 |
| concepts[9].display_name | Quadratic classifier |
| concepts[10].id | https://openalex.org/C185207860 |
| concepts[10].level | 4 |
| concepts[10].score | 0.46871939301490784 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17004744 |
| concepts[10].display_name | Bayes classifier |
| concepts[11].id | https://openalex.org/C207201462 |
| concepts[11].level | 3 |
| concepts[11].score | 0.434539794921875 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[11].display_name | Bayes' theorem |
| concepts[12].id | https://openalex.org/C173102733 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4172457456588745 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6760396 |
| concepts[12].display_name | Margin classifier |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4137618839740753 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4086694121360779 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C107673813 |
| concepts[15].level | 2 |
| concepts[15].score | 0.09099382162094116 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[15].display_name | Bayesian probability |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.693115234375 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.6928319931030273 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.6844611763954163 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[3].score | 0.6647958159446716 |
| keywords[3].display_name | Naive Bayes classifier |
| keywords[4].id | https://openalex.org/keywords/classifier |
| keywords[4].score | 0.6577694416046143 |
| keywords[4].display_name | Classifier (UML) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6232526302337646 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.6086058616638184 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[7].score | 0.5415918827056885 |
| keywords[7].display_name | Wireless sensor network |
| keywords[8].id | https://openalex.org/keywords/redundancy |
| keywords[8].score | 0.5068259835243225 |
| keywords[8].display_name | Redundancy (engineering) |
| keywords[9].id | https://openalex.org/keywords/quadratic-classifier |
| keywords[9].score | 0.49091559648513794 |
| keywords[9].display_name | Quadratic classifier |
| keywords[10].id | https://openalex.org/keywords/bayes-classifier |
| keywords[10].score | 0.46871939301490784 |
| keywords[10].display_name | Bayes classifier |
| keywords[11].id | https://openalex.org/keywords/bayes-theorem |
| keywords[11].score | 0.434539794921875 |
| keywords[11].display_name | Bayes' theorem |
| keywords[12].id | https://openalex.org/keywords/margin-classifier |
| keywords[12].score | 0.4172457456588745 |
| keywords[12].display_name | Margin classifier |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.4137618839740753 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.4086694121360779 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/bayesian-probability |
| keywords[15].score | 0.09099382162094116 |
| keywords[15].display_name | Bayesian probability |
| language | en |
| locations[0].id | doi:10.7717/peerj-cs.1997 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210178049 |
| locations[0].source.issn | 2376-5992 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2376-5992 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PeerJ Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_name | PeerJ, Inc. |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_lineage_names | PeerJ, Inc. |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PeerJ Computer Science |
| locations[0].landing_page_url | https://doi.org/10.7717/peerj-cs.1997 |
| locations[1].id | pmid:38855198 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PeerJ. Computer science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38855198 |
| locations[2].id | pmh:oai:doaj.org/article:a1a9042050094939b6a33e1919ac3a41 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PeerJ Computer Science, Vol 10, p e1997 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/a1a9042050094939b6a33e1919ac3a41 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11157571 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PeerJ Comput Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11157571 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5050441872 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Muteeah Aljawarneh |
| authorships[0].countries | SA, TN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Science Department, College of Science and Humanities, Dawadmi, Shaqra University, Dawadmi, Riyadh, Saudi Arabia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I68916915 |
| authorships[0].affiliations[1].raw_affiliation_string | MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[0].institutions[0].id | https://openalex.org/I206935292 |
| authorships[0].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Shaqra University |
| authorships[0].institutions[1].id | https://openalex.org/I68916915 |
| authorships[0].institutions[1].ror | https://ror.org/022efad20 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I68916915 |
| authorships[0].institutions[1].country_code | TN |
| authorships[0].institutions[1].display_name | University of Gabès |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muteeah Aljawarneh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Science Department, College of Science and Humanities, Dawadmi, Shaqra University, Dawadmi, Riyadh, Saudi Arabia, MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[1].author.id | https://openalex.org/A5107931368 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7909-1659 |
| authorships[1].author.display_name | Rim Hamdaoui |
| authorships[1].countries | SA, TN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Science Department, College of Science and Humanities, Dawadmi, Shaqra University, Dawadmi, Riyadh, Saudi Arabia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I68916915 |
| authorships[1].affiliations[1].raw_affiliation_string | MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[1].institutions[0].id | https://openalex.org/I206935292 |
| authorships[1].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | Shaqra University |
| authorships[1].institutions[1].id | https://openalex.org/I68916915 |
| authorships[1].institutions[1].ror | https://ror.org/022efad20 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I68916915 |
| authorships[1].institutions[1].country_code | TN |
| authorships[1].institutions[1].display_name | University of Gabès |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rim Hamdaoui |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Science Department, College of Science and Humanities, Dawadmi, Shaqra University, Dawadmi, Riyadh, Saudi Arabia, MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[2].author.id | https://openalex.org/A5030292897 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1844-975X |
| authorships[2].author.display_name | Ahmed Zouinkhi |
| authorships[2].countries | TN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I68916915 |
| authorships[2].affiliations[0].raw_affiliation_string | MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[2].institutions[0].id | https://openalex.org/I68916915 |
| authorships[2].institutions[0].ror | https://ror.org/022efad20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I68916915 |
| authorships[2].institutions[0].country_code | TN |
| authorships[2].institutions[0].display_name | University of Gabès |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahmed Zouinkhi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[3].author.id | https://openalex.org/A5028324615 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1308-1762 |
| authorships[3].author.display_name | Someah Alangari |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I206935292 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Science Department, College of Science and Humanities, Dawadmi, Shaqra University, Dawadmi, Riyadh, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I206935292 |
| authorships[3].institutions[0].ror | https://ror.org/05hawb687 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I206935292 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Shaqra University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Someah Alangari |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Science Department, College of Science and Humanities, Dawadmi, Shaqra University, Dawadmi, Riyadh, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5107846236 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mohamed Naceur Abdelkrim |
| authorships[4].countries | TN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I68916915 |
| authorships[4].affiliations[0].raw_affiliation_string | MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| authorships[4].institutions[0].id | https://openalex.org/I68916915 |
| authorships[4].institutions[0].ror | https://ror.org/022efad20 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I68916915 |
| authorships[4].institutions[0].country_code | TN |
| authorships[4].institutions[0].display_name | University of Gabès |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Mohamed Naceur Abdelkrim |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes, University of Gabes, Gabes, Tunisia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7717/peerj-cs.1997 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Energy optimization for wireless sensor network using minimum redundancy maximum relevance feature selection and classification techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10080 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Energy Efficient Wireless Sensor Networks |
| related_works | https://openalex.org/W2368299322, https://openalex.org/W4307947749, https://openalex.org/W2537862391, https://openalex.org/W2138714265, https://openalex.org/W92531827, https://openalex.org/W2018458007, https://openalex.org/W4364301914, https://openalex.org/W1801413419, https://openalex.org/W2158835651, https://openalex.org/W2368396039 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.7717/peerj-cs.1997 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210178049 |
| best_oa_location.source.issn | 2376-5992 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2376-5992 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PeerJ Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_name | PeerJ, Inc. |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_lineage_names | PeerJ, Inc. |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PeerJ Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.7717/peerj-cs.1997 |
| primary_location.id | doi:10.7717/peerj-cs.1997 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210178049 |
| primary_location.source.issn | 2376-5992 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2376-5992 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PeerJ Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_name | PeerJ, Inc. |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_lineage_names | PeerJ, Inc. |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PeerJ Computer Science |
| primary_location.landing_page_url | https://doi.org/10.7717/peerj-cs.1997 |
| publication_date | 2024-04-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6755754453, https://openalex.org/W3182114900, https://openalex.org/W6849160460, https://openalex.org/W6750317527, https://openalex.org/W2010468322, https://openalex.org/W6847755113, https://openalex.org/W6688465867, https://openalex.org/W2277832099, https://openalex.org/W2791315675, https://openalex.org/W2290145898, https://openalex.org/W4322629999, https://openalex.org/W3015324999, https://openalex.org/W2916641566, https://openalex.org/W6810746632, https://openalex.org/W4366375748, https://openalex.org/W6658453837, https://openalex.org/W6855008728, https://openalex.org/W6687370692, https://openalex.org/W3185995324, https://openalex.org/W4384557713, https://openalex.org/W2562498401, https://openalex.org/W6852224535, https://openalex.org/W2475596014, https://openalex.org/W2336828274, https://openalex.org/W4306764880, https://openalex.org/W4293660994, https://openalex.org/W4306931317, https://openalex.org/W3108794112, https://openalex.org/W3207002497, https://openalex.org/W4367400139, https://openalex.org/W2797131702, https://openalex.org/W2212296318, https://openalex.org/W4225665630, https://openalex.org/W2188591201, https://openalex.org/W4385256175, https://openalex.org/W4312451771, https://openalex.org/W2032722072, https://openalex.org/W4317987771 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 9, 37 |
| abstract_inverted_index.In | 0, 21 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.as | 36 |
| abstract_inverted_index.by | 29, 64 |
| abstract_inverted_index.in | 92 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 45, 67, 97 |
| abstract_inverted_index.to | 17, 41, 55, 82 |
| abstract_inverted_index.we | 24 |
| abstract_inverted_index.KNN | 103 |
| abstract_inverted_index.SVM | 69, 113 |
| abstract_inverted_index.The | 58, 86 |
| abstract_inverted_index.and | 12, 77, 99, 112 |
| abstract_inverted_index.are | 15, 61 |
| abstract_inverted_index.the | 43, 52, 93, 102, 109 |
| abstract_inverted_index.MRMR | 50 |
| abstract_inverted_index.than | 108 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.then | 62 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.with | 70 |
| abstract_inverted_index.(KNN) | 81 |
| abstract_inverted_index.Bayes | 75, 111 |
| abstract_inverted_index.adopt | 25 |
| abstract_inverted_index.basic | 10 |
| abstract_inverted_index.gives | 105 |
| abstract_inverted_index.ranks | 51 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.types | 66 |
| abstract_inverted_index.using | 30 |
| abstract_inverted_index.(MRMR) | 35 |
| abstract_inverted_index.(WSN), | 4 |
| abstract_inverted_index.better | 106 |
| abstract_inverted_index.energy | 6, 19 |
| abstract_inverted_index.factor | 96 |
| abstract_inverted_index.issue, | 11 |
| abstract_inverted_index.kernel | 72 |
| abstract_inverted_index.linear | 71 |
| abstract_inverted_index.naïve | 74, 110 |
| abstract_inverted_index.number | 44 |
| abstract_inverted_index.sensor | 2 |
| abstract_inverted_index.showed | 100 |
| abstract_inverted_index.applied | 16 |
| abstract_inverted_index.compare | 83 |
| abstract_inverted_index.energy. | 49 |
| abstract_inverted_index.feature | 26, 38 |
| abstract_inverted_index.maximum | 33 |
| abstract_inverted_index.minimum | 31 |
| abstract_inverted_index.results | 88, 107 |
| abstract_inverted_index.sensors | 46, 53, 98 |
| abstract_inverted_index.several | 13 |
| abstract_inverted_index.thereby | 47 |
| abstract_inverted_index.usually | 8 |
| abstract_inverted_index.values. | 85 |
| abstract_inverted_index.accuracy | 84 |
| abstract_inverted_index.article, | 23 |
| abstract_inverted_index.features | 60 |
| abstract_inverted_index.lifetime | 94 |
| abstract_inverted_index.minimize | 42 |
| abstract_inverted_index.networks | 3 |
| abstract_inverted_index.optimize | 18 |
| abstract_inverted_index.selected | 59 |
| abstract_inverted_index.wireless | 1 |
| abstract_inverted_index.according | 54 |
| abstract_inverted_index.different | 65 |
| abstract_inverted_index.extension | 95 |
| abstract_inverted_index.k-nearest | 78 |
| abstract_inverted_index.neighbors | 79 |
| abstract_inverted_index.relevance | 34 |
| abstract_inverted_index.selection | 27, 39 |
| abstract_inverted_index.technique | 40 |
| abstract_inverted_index.approaches | 14, 28 |
| abstract_inverted_index.classified | 63 |
| abstract_inverted_index.classifier | 80, 104 |
| abstract_inverted_index.conserving | 5, 48 |
| abstract_inverted_index.redundancy | 32 |
| abstract_inverted_index.simulation | 87 |
| abstract_inverted_index.classifier, | 73, 76 |
| abstract_inverted_index.classifier. | 114 |
| abstract_inverted_index.illustrated | 89 |
| abstract_inverted_index.improvement | 91 |
| abstract_inverted_index.classifiers; | 68 |
| abstract_inverted_index.consumption. | 20 |
| abstract_inverted_index.significance. | 57 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.92555847 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |