Energy Performance Analysis of Photovoltaic Integrated with Microgrid Data Analysis Using Deep Learning Feature Selection and Classification Techniques Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/su151411081
Microgrids are an essential element of smart grids, which contain distributed renewable energy sources (RESs), energy storage devices, and load control strategies. Models built based on machine learning (ML) and deep learning (DL) offer hope for anticipating consumer demands and energy production from RESs. This study suggests an innovative approach for energy analysis based on the feature extraction and classification of microgrid photovoltaic cell data using deep learning algorithms. The energy optimization of a microgrid was carried out using a photovoltaic energy system with distributed power generation. The data analysis has been carried out for feature analysis and classification using a Gaussian radial Boltzmann with Markov encoder model. Based on microgrid energy optimization and data analysis, an experimental analysis of power analysis, energy efficiency, quality of service (QoS), accuracy, precision, and recall has been conducted. The proposed technique attained power analysis of 88%, energy efficiency of 95%, QoS of 77%, accuracy of 93%, precision of 85%, and recall of 77%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/su151411081
- https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494
- OA Status
- gold
- Cited By
- 11
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384557713
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384557713Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/su151411081Digital Object Identifier
- Title
-
Energy Performance Analysis of Photovoltaic Integrated with Microgrid Data Analysis Using Deep Learning Feature Selection and Classification TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-15Full publication date if available
- Authors
-
Sana Qaiyum, Martin Margala, Pravin R. Kshirsagar, Prąsun Chakrabarti, Kashif IrshadList of authors in order
- Landing page
-
https://doi.org/10.3390/su151411081Publisher landing page
- PDF URL
-
https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494Direct OA link when available
- Concepts
-
Microgrid, Photovoltaic system, Computer science, Feature selection, Renewable energy, Feature extraction, Artificial intelligence, Machine learning, Engineering, Data mining, Electrical engineering, Control (management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 8, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384557713 |
|---|---|
| doi | https://doi.org/10.3390/su151411081 |
| ids.doi | https://doi.org/10.3390/su151411081 |
| ids.openalex | https://openalex.org/W4384557713 |
| fwci | 2.73738411 |
| type | article |
| title | Energy Performance Analysis of Photovoltaic Integrated with Microgrid Data Analysis Using Deep Learning Feature Selection and Classification Techniques |
| biblio.issue | 14 |
| biblio.volume | 15 |
| biblio.last_page | 11081 |
| biblio.first_page | 11081 |
| topics[0].id | https://openalex.org/T10223 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Microgrid Control and Optimization |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C2776784348 |
| concepts[0].level | 3 |
| concepts[0].score | 0.930515706539154 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5762595 |
| concepts[0].display_name | Microgrid |
| concepts[1].id | https://openalex.org/C41291067 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6745209097862244 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1897785 |
| concepts[1].display_name | Photovoltaic system |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5908311009407043 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C148483581 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5459434986114502 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[3].display_name | Feature selection |
| concepts[4].id | https://openalex.org/C188573790 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4658563733100891 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12705 |
| concepts[4].display_name | Renewable energy |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46579989790916443 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46040642261505127 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3495067358016968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3437529504299164 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33200621604919434 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10252860188484192 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C2775924081 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[11].display_name | Control (management) |
| keywords[0].id | https://openalex.org/keywords/microgrid |
| keywords[0].score | 0.930515706539154 |
| keywords[0].display_name | Microgrid |
| keywords[1].id | https://openalex.org/keywords/photovoltaic-system |
| keywords[1].score | 0.6745209097862244 |
| keywords[1].display_name | Photovoltaic system |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5908311009407043 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feature-selection |
| keywords[3].score | 0.5459434986114502 |
| keywords[3].display_name | Feature selection |
| keywords[4].id | https://openalex.org/keywords/renewable-energy |
| keywords[4].score | 0.4658563733100891 |
| keywords[4].display_name | Renewable energy |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.46579989790916443 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.46040642261505127 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3495067358016968 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.3437529504299164 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.33200621604919434 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/electrical-engineering |
| keywords[10].score | 0.10252860188484192 |
| keywords[10].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.3390/su151411081 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10134376 |
| locations[0].source.issn | 2071-1050 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2071-1050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainability |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainability |
| locations[0].landing_page_url | https://doi.org/10.3390/su151411081 |
| locations[1].id | pmh:oai:mdpi.com:/2071-1050/15/14/11081/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sustainability; Volume 15; Issue 14; Pages: 11081 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/su151411081 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5078391471 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sana Qaiyum |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79516672 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA |
| authorships[0].institutions[0].id | https://openalex.org/I79516672 |
| authorships[0].institutions[0].ror | https://ror.org/01x8rc503 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799628689, https://openalex.org/I79516672 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Louisiana at Lafayette |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sana Qaiyum |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA |
| authorships[1].author.id | https://openalex.org/A5062664944 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0034-0369 |
| authorships[1].author.display_name | Martin Margala |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79516672 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA |
| authorships[1].institutions[0].id | https://openalex.org/I79516672 |
| authorships[1].institutions[0].ror | https://ror.org/01x8rc503 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799628689, https://openalex.org/I79516672 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Louisiana at Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Martin Margala |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA |
| authorships[2].author.id | https://openalex.org/A5076524025 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7381-6284 |
| authorships[2].author.display_name | Pravin R. Kshirsagar |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Data Science, Tulsiramji Gaikwad Patil College of Engineering and Technology, Nagpur 441108, India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pravin R. Kshirsagar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Data Science, Tulsiramji Gaikwad Patil College of Engineering and Technology, Nagpur 441108, India |
| authorships[3].author.id | https://openalex.org/A5089771051 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8062-4144 |
| authorships[3].author.display_name | Prąsun Chakrabarti |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I110116418 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara 391510, India |
| authorships[3].institutions[0].id | https://openalex.org/I110116418 |
| authorships[3].institutions[0].ror | https://ror.org/01bx8ja67 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I110116418 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Maharaja Sayajirao University of Baroda |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Prasun Chakrabarti |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara 391510, India |
| authorships[4].author.id | https://openalex.org/A5086257007 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6493-0969 |
| authorships[4].author.display_name | Kashif Irshad |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[4].affiliations[0].raw_affiliation_string | Interdisciplinary Research Centre for Renewable Energy and Power System, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I134085113 |
| authorships[4].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kashif Irshad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Interdisciplinary Research Centre for Renewable Energy and Power System, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Energy Performance Analysis of Photovoltaic Integrated with Microgrid Data Analysis Using Deep Learning Feature Selection and Classification Techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10223 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Microgrid Control and Optimization |
| related_works | https://openalex.org/W1574359403, https://openalex.org/W2057975886, https://openalex.org/W4308700935, https://openalex.org/W4210780382, https://openalex.org/W2356033827, https://openalex.org/W2391138633, https://openalex.org/W2907234787, https://openalex.org/W4285503559, https://openalex.org/W4206134051, https://openalex.org/W4383747562 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/su151411081 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10134376 |
| best_oa_location.source.issn | 2071-1050 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2071-1050 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainability |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainability |
| best_oa_location.landing_page_url | https://doi.org/10.3390/su151411081 |
| primary_location.id | doi:10.3390/su151411081 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10134376 |
| primary_location.source.issn | 2071-1050 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2071-1050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainability |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2071-1050/15/14/11081/pdf?version=1689414494 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainability |
| primary_location.landing_page_url | https://doi.org/10.3390/su151411081 |
| publication_date | 2023-07-15 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4211093334, https://openalex.org/W3149578452, https://openalex.org/W4361030035, https://openalex.org/W3198049210, https://openalex.org/W4303685474, https://openalex.org/W2990297540, https://openalex.org/W2960560113, https://openalex.org/W3199109943, https://openalex.org/W4285600350, https://openalex.org/W4290996193, https://openalex.org/W4206718650, https://openalex.org/W3152210602, https://openalex.org/W3202758697, https://openalex.org/W3165230167, https://openalex.org/W3179316720, https://openalex.org/W4283159452, https://openalex.org/W3181669971, https://openalex.org/W3210451168, https://openalex.org/W3085898885, https://openalex.org/W4226086227, https://openalex.org/W4294631267, https://openalex.org/W3124819130 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 73, 79, 100 |
| abstract_inverted_index.an | 2, 47, 116 |
| abstract_inverted_index.of | 5, 60, 72, 119, 125, 141, 145, 148, 151, 154, 158 |
| abstract_inverted_index.on | 25, 54, 109 |
| abstract_inverted_index.QoS | 147 |
| abstract_inverted_index.The | 69, 87, 135 |
| abstract_inverted_index.and | 18, 29, 39, 58, 97, 113, 130, 156 |
| abstract_inverted_index.are | 1 |
| abstract_inverted_index.for | 35, 50, 94 |
| abstract_inverted_index.has | 90, 132 |
| abstract_inverted_index.out | 77, 93 |
| abstract_inverted_index.the | 55 |
| abstract_inverted_index.was | 75 |
| abstract_inverted_index.(DL) | 32 |
| abstract_inverted_index.(ML) | 28 |
| abstract_inverted_index.77%, | 149 |
| abstract_inverted_index.77%. | 159 |
| abstract_inverted_index.85%, | 155 |
| abstract_inverted_index.88%, | 142 |
| abstract_inverted_index.93%, | 152 |
| abstract_inverted_index.95%, | 146 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.been | 91, 133 |
| abstract_inverted_index.cell | 63 |
| abstract_inverted_index.data | 64, 88, 114 |
| abstract_inverted_index.deep | 30, 66 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.hope | 34 |
| abstract_inverted_index.load | 19 |
| abstract_inverted_index.with | 83, 104 |
| abstract_inverted_index.Based | 108 |
| abstract_inverted_index.RESs. | 43 |
| abstract_inverted_index.based | 24, 53 |
| abstract_inverted_index.built | 23 |
| abstract_inverted_index.offer | 33 |
| abstract_inverted_index.power | 85, 120, 139 |
| abstract_inverted_index.smart | 6 |
| abstract_inverted_index.study | 45 |
| abstract_inverted_index.using | 65, 78, 99 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.(QoS), | 127 |
| abstract_inverted_index.Markov | 105 |
| abstract_inverted_index.Models | 22 |
| abstract_inverted_index.energy | 12, 15, 40, 51, 70, 81, 111, 122, 143 |
| abstract_inverted_index.grids, | 7 |
| abstract_inverted_index.model. | 107 |
| abstract_inverted_index.radial | 102 |
| abstract_inverted_index.recall | 131, 157 |
| abstract_inverted_index.system | 82 |
| abstract_inverted_index.(RESs), | 14 |
| abstract_inverted_index.carried | 76, 92 |
| abstract_inverted_index.contain | 9 |
| abstract_inverted_index.control | 20 |
| abstract_inverted_index.demands | 38 |
| abstract_inverted_index.element | 4 |
| abstract_inverted_index.encoder | 106 |
| abstract_inverted_index.feature | 56, 95 |
| abstract_inverted_index.machine | 26 |
| abstract_inverted_index.quality | 124 |
| abstract_inverted_index.service | 126 |
| abstract_inverted_index.sources | 13 |
| abstract_inverted_index.storage | 16 |
| abstract_inverted_index.Gaussian | 101 |
| abstract_inverted_index.accuracy | 150 |
| abstract_inverted_index.analysis | 52, 89, 96, 118, 140 |
| abstract_inverted_index.approach | 49 |
| abstract_inverted_index.attained | 138 |
| abstract_inverted_index.consumer | 37 |
| abstract_inverted_index.devices, | 17 |
| abstract_inverted_index.learning | 27, 31, 67 |
| abstract_inverted_index.proposed | 136 |
| abstract_inverted_index.suggests | 46 |
| abstract_inverted_index.Boltzmann | 103 |
| abstract_inverted_index.accuracy, | 128 |
| abstract_inverted_index.analysis, | 115, 121 |
| abstract_inverted_index.essential | 3 |
| abstract_inverted_index.microgrid | 61, 74, 110 |
| abstract_inverted_index.precision | 153 |
| abstract_inverted_index.renewable | 11 |
| abstract_inverted_index.technique | 137 |
| abstract_inverted_index.Microgrids | 0 |
| abstract_inverted_index.conducted. | 134 |
| abstract_inverted_index.efficiency | 144 |
| abstract_inverted_index.extraction | 57 |
| abstract_inverted_index.innovative | 48 |
| abstract_inverted_index.precision, | 129 |
| abstract_inverted_index.production | 41 |
| abstract_inverted_index.algorithms. | 68 |
| abstract_inverted_index.distributed | 10, 84 |
| abstract_inverted_index.efficiency, | 123 |
| abstract_inverted_index.generation. | 86 |
| abstract_inverted_index.strategies. | 21 |
| abstract_inverted_index.anticipating | 36 |
| abstract_inverted_index.experimental | 117 |
| abstract_inverted_index.optimization | 71, 112 |
| abstract_inverted_index.photovoltaic | 62, 80 |
| abstract_inverted_index.classification | 59, 98 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5078391471 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I79516672 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.88873738 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |