Enforcing exact boundary and initial conditions in the deep mixed residual method Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2008.01491
In theory, boundary and initial conditions are important for the wellposedness of partial differential equations (PDEs). Numerically, these conditions can be enforced exactly in classical numerical methods, such as finite difference method and finite element method. Recent years have witnessed growing interests in solving PDEs by deep neural networks (DNNs), especially in the high-dimensional case. However, in the generic situation, a careful literature review shows that boundary conditions cannot be enforced exactly for DNNs, which inevitably leads to a modeling error. In this work, based on the recently developed deep mixed residual method (MIM), we demonstrate how to make DNNs satisfy boundary and initial conditions automatically in a systematic manner. As a consequence, the loss function in MIM is free of the penalty term and does not have any modeling error. Using numerous examples, including Dirichlet, Neumann, mixed, Robin, and periodic boundary conditions for elliptic equations, and initial conditions for parabolic and hyperbolic equations, we show that enforcing exact boundary and initial conditions not only provides a better approximate solution but also facilitates the training process.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2008.01491
- https://arxiv.org/pdf/2008.01491
- OA Status
- green
- Cited By
- 10
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3047103993
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3047103993Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2008.01491Digital Object Identifier
- Title
-
Enforcing exact boundary and initial conditions in the deep mixed residual methodWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-04Full publication date if available
- Authors
-
Liyao Lyu, Keke Wu, Rui Du, Jingrun ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2008.01491Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2008.01491Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2008.01491Direct OA link when available
- Concepts
-
Residual, Boundary value problem, Partial differential equation, Neumann boundary condition, Applied mathematics, Boundary (topology), Dirichlet boundary condition, Function (biology), Finite element method, Mathematics, Robin boundary condition, Dirichlet distribution, Computer science, Mathematical analysis, Algorithm, Physics, Biology, Evolutionary biology, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2, 2022: 2, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3047103993 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2008.01491 |
| ids.doi | https://doi.org/10.48550/arxiv.2008.01491 |
| ids.mag | 3047103993 |
| ids.openalex | https://openalex.org/W3047103993 |
| fwci | |
| type | preprint |
| title | Enforcing exact boundary and initial conditions in the deep mixed residual method |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10514 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2211 |
| topics[1].subfield.display_name | Mechanics of Materials |
| topics[1].display_name | Numerical methods in engineering |
| topics[2].id | https://openalex.org/T10339 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9952999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Advanced Numerical Methods in Computational Mathematics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.663294792175293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C182310444 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6395938396453857 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1332643 |
| concepts[1].display_name | Boundary value problem |
| concepts[2].id | https://openalex.org/C93779851 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6045017242431641 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[2].display_name | Partial differential equation |
| concepts[3].id | https://openalex.org/C163681178 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5606966614723206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1149279 |
| concepts[3].display_name | Neumann boundary condition |
| concepts[4].id | https://openalex.org/C28826006 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5474477410316467 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[4].display_name | Applied mathematics |
| concepts[5].id | https://openalex.org/C62354387 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5358947515487671 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[5].display_name | Boundary (topology) |
| concepts[6].id | https://openalex.org/C110167270 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5218835473060608 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1193699 |
| concepts[6].display_name | Dirichlet boundary condition |
| concepts[7].id | https://openalex.org/C14036430 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4632386565208435 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[7].display_name | Function (biology) |
| concepts[8].id | https://openalex.org/C135628077 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4469008445739746 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[8].display_name | Finite element method |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.44163256883621216 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C108257041 |
| concepts[10].level | 4 |
| concepts[10].score | 0.43357226252555847 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q748993 |
| concepts[10].display_name | Robin boundary condition |
| concepts[11].id | https://openalex.org/C169214877 |
| concepts[11].level | 3 |
| concepts[11].score | 0.41982775926589966 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q981016 |
| concepts[11].display_name | Dirichlet distribution |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.4043370187282562 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.39924493432044983 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1244218647480011 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12195917963981628 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C78458016 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[17].display_name | Evolutionary biology |
| concepts[18].id | https://openalex.org/C97355855 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[18].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.663294792175293 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/boundary-value-problem |
| keywords[1].score | 0.6395938396453857 |
| keywords[1].display_name | Boundary value problem |
| keywords[2].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[2].score | 0.6045017242431641 |
| keywords[2].display_name | Partial differential equation |
| keywords[3].id | https://openalex.org/keywords/neumann-boundary-condition |
| keywords[3].score | 0.5606966614723206 |
| keywords[3].display_name | Neumann boundary condition |
| keywords[4].id | https://openalex.org/keywords/applied-mathematics |
| keywords[4].score | 0.5474477410316467 |
| keywords[4].display_name | Applied mathematics |
| keywords[5].id | https://openalex.org/keywords/boundary |
| keywords[5].score | 0.5358947515487671 |
| keywords[5].display_name | Boundary (topology) |
| keywords[6].id | https://openalex.org/keywords/dirichlet-boundary-condition |
| keywords[6].score | 0.5218835473060608 |
| keywords[6].display_name | Dirichlet boundary condition |
| keywords[7].id | https://openalex.org/keywords/function |
| keywords[7].score | 0.4632386565208435 |
| keywords[7].display_name | Function (biology) |
| keywords[8].id | https://openalex.org/keywords/finite-element-method |
| keywords[8].score | 0.4469008445739746 |
| keywords[8].display_name | Finite element method |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.44163256883621216 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/robin-boundary-condition |
| keywords[10].score | 0.43357226252555847 |
| keywords[10].display_name | Robin boundary condition |
| keywords[11].id | https://openalex.org/keywords/dirichlet-distribution |
| keywords[11].score | 0.41982775926589966 |
| keywords[11].display_name | Dirichlet distribution |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.4043370187282562 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.39924493432044983 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.1244218647480011 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.12195917963981628 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2008.01491 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2008.01491 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2008.01491 |
| locations[1].id | doi:10.48550/arxiv.2008.01491 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2008.01491 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004525330 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2994-1464 |
| authorships[0].author.display_name | Liyao Lyu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liyao Lyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068296887 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4117-1370 |
| authorships[1].author.display_name | Keke Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keke Wu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5000360043 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3811-7488 |
| authorships[2].author.display_name | Rui Du |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rui Du |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025195102 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9977-2892 |
| authorships[3].author.display_name | Jingrun Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jingrun Chen |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2008.01491 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-08-10T00:00:00 |
| display_name | Enforcing exact boundary and initial conditions in the deep mixed residual method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W1514481392, https://openalex.org/W2174317416, https://openalex.org/W4387165380, https://openalex.org/W4322770021, https://openalex.org/W3203194254, https://openalex.org/W4294783321, https://openalex.org/W4300850840, https://openalex.org/W2020502833, https://openalex.org/W2100405323, https://openalex.org/W4385963315 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2008.01491 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2008.01491 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2008.01491 |
| primary_location.id | pmh:oai:arXiv.org:2008.01491 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2008.01491 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2008.01491 |
| publication_date | 2020-08-04 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2749028154, https://openalex.org/W3021853966, https://openalex.org/W2803629276, https://openalex.org/W2899283552, https://openalex.org/W2194775991, https://openalex.org/W3016703299, https://openalex.org/W1571438983, https://openalex.org/W2125645174, https://openalex.org/W2754833785, https://openalex.org/W1541162015, https://openalex.org/W1522301498, https://openalex.org/W2988621382 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 60, 78, 107, 111, 166 |
| abstract_inverted_index.As | 110 |
| abstract_inverted_index.In | 0, 81 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.be | 20, 69 |
| abstract_inverted_index.by | 45 |
| abstract_inverted_index.in | 23, 42, 51, 56, 106, 116 |
| abstract_inverted_index.is | 118 |
| abstract_inverted_index.of | 11, 120 |
| abstract_inverted_index.on | 85 |
| abstract_inverted_index.to | 77, 97 |
| abstract_inverted_index.we | 94, 154 |
| abstract_inverted_index.MIM | 117 |
| abstract_inverted_index.and | 3, 32, 102, 124, 139, 146, 151, 160 |
| abstract_inverted_index.any | 128 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.but | 170 |
| abstract_inverted_index.can | 19 |
| abstract_inverted_index.for | 8, 72, 143, 149 |
| abstract_inverted_index.how | 96 |
| abstract_inverted_index.not | 126, 163 |
| abstract_inverted_index.the | 9, 52, 57, 86, 113, 121, 173 |
| abstract_inverted_index.DNNs | 99 |
| abstract_inverted_index.PDEs | 44 |
| abstract_inverted_index.also | 171 |
| abstract_inverted_index.deep | 46, 89 |
| abstract_inverted_index.does | 125 |
| abstract_inverted_index.free | 119 |
| abstract_inverted_index.have | 38, 127 |
| abstract_inverted_index.loss | 114 |
| abstract_inverted_index.make | 98 |
| abstract_inverted_index.only | 164 |
| abstract_inverted_index.show | 155 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.term | 123 |
| abstract_inverted_index.that | 65, 156 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.DNNs, | 73 |
| abstract_inverted_index.Using | 131 |
| abstract_inverted_index.based | 84 |
| abstract_inverted_index.case. | 54 |
| abstract_inverted_index.exact | 158 |
| abstract_inverted_index.leads | 76 |
| abstract_inverted_index.mixed | 90 |
| abstract_inverted_index.shows | 64 |
| abstract_inverted_index.these | 17 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.work, | 83 |
| abstract_inverted_index.years | 37 |
| abstract_inverted_index.(MIM), | 93 |
| abstract_inverted_index.Recent | 36 |
| abstract_inverted_index.Robin, | 138 |
| abstract_inverted_index.better | 167 |
| abstract_inverted_index.cannot | 68 |
| abstract_inverted_index.error. | 80, 130 |
| abstract_inverted_index.finite | 29, 33 |
| abstract_inverted_index.method | 31, 92 |
| abstract_inverted_index.mixed, | 137 |
| abstract_inverted_index.neural | 47 |
| abstract_inverted_index.review | 63 |
| abstract_inverted_index.(DNNs), | 49 |
| abstract_inverted_index.(PDEs). | 15 |
| abstract_inverted_index.careful | 61 |
| abstract_inverted_index.element | 34 |
| abstract_inverted_index.exactly | 22, 71 |
| abstract_inverted_index.generic | 58 |
| abstract_inverted_index.growing | 40 |
| abstract_inverted_index.initial | 4, 103, 147, 161 |
| abstract_inverted_index.manner. | 109 |
| abstract_inverted_index.method. | 35 |
| abstract_inverted_index.partial | 12 |
| abstract_inverted_index.penalty | 122 |
| abstract_inverted_index.satisfy | 100 |
| abstract_inverted_index.solving | 43 |
| abstract_inverted_index.theory, | 1 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.Neumann, | 136 |
| abstract_inverted_index.boundary | 2, 66, 101, 141, 159 |
| abstract_inverted_index.elliptic | 144 |
| abstract_inverted_index.enforced | 21, 70 |
| abstract_inverted_index.function | 115 |
| abstract_inverted_index.methods, | 26 |
| abstract_inverted_index.modeling | 79, 129 |
| abstract_inverted_index.networks | 48 |
| abstract_inverted_index.numerous | 132 |
| abstract_inverted_index.periodic | 140 |
| abstract_inverted_index.process. | 175 |
| abstract_inverted_index.provides | 165 |
| abstract_inverted_index.recently | 87 |
| abstract_inverted_index.residual | 91 |
| abstract_inverted_index.solution | 169 |
| abstract_inverted_index.training | 174 |
| abstract_inverted_index.classical | 24 |
| abstract_inverted_index.developed | 88 |
| abstract_inverted_index.enforcing | 157 |
| abstract_inverted_index.equations | 14 |
| abstract_inverted_index.examples, | 133 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.including | 134 |
| abstract_inverted_index.interests | 41 |
| abstract_inverted_index.numerical | 25 |
| abstract_inverted_index.parabolic | 150 |
| abstract_inverted_index.witnessed | 39 |
| abstract_inverted_index.Dirichlet, | 135 |
| abstract_inverted_index.conditions | 5, 18, 67, 104, 142, 148, 162 |
| abstract_inverted_index.difference | 30 |
| abstract_inverted_index.equations, | 145, 153 |
| abstract_inverted_index.especially | 50 |
| abstract_inverted_index.hyperbolic | 152 |
| abstract_inverted_index.inevitably | 75 |
| abstract_inverted_index.literature | 62 |
| abstract_inverted_index.situation, | 59 |
| abstract_inverted_index.systematic | 108 |
| abstract_inverted_index.approximate | 168 |
| abstract_inverted_index.demonstrate | 95 |
| abstract_inverted_index.facilitates | 172 |
| abstract_inverted_index.Numerically, | 16 |
| abstract_inverted_index.consequence, | 112 |
| abstract_inverted_index.differential | 13 |
| abstract_inverted_index.automatically | 105 |
| abstract_inverted_index.wellposedness | 10 |
| abstract_inverted_index.high-dimensional | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |