Enforcing exact permutation and rotational symmetries in the application of quantum neural network on point cloud datasets Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.11150
Recent developments in the field of quantum machine learning have promoted the idea of incorporating physical symmetries in the structure of quantum circuits. A crucial milestone in this area is the realization of $S_{n}$-permutation equivariant quantum neural networks (QNN) that are equivariant under permutations of input objects. In this work, we focus on encoding the rotational symmetry of point cloud datasets into the QNN. The key insight of the approach is that all rotationally invariant functions with vector inputs are equivalent to a function with inputs of vector inner products. We provide a novel structure of QNN that is exactly invariant to both rotations and permutations, with its efficacy demonstrated numerically in the problems of two-dimensional image classifications and identifying high-energy particle decays, produced by proton-proton collisions, with the $SO(1,3)$ Lorentz symmetry.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.11150
- https://arxiv.org/pdf/2405.11150
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398191698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398191698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.11150Digital Object Identifier
- Title
-
Enforcing exact permutation and rotational symmetries in the application of quantum neural network on point cloud datasetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-18Full publication date if available
- Authors
-
Zhelun Li, Lento Nagano, K. TerashiList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.11150Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.11150Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.11150Direct OA link when available
- Concepts
-
Homogeneous space, Point cloud, Permutation (music), Point (geometry), Cloud computing, Artificial neural network, Quantum, Computer science, Statistical physics, Theoretical physics, Artificial intelligence, Physics, Mathematics, Quantum mechanics, Geometry, Operating system, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398191698 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.11150 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.11150 |
| ids.openalex | https://openalex.org/W4398191698 |
| fwci | |
| type | preprint |
| title | Enforcing exact permutation and rotational symmetries in the application of quantum neural network on point cloud datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14158 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9519000053405762 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Optical Systems and Laser Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C96469262 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7888131737709045 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1324364 |
| concepts[0].display_name | Homogeneous space |
| concepts[1].id | https://openalex.org/C131979681 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6987465620040894 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[1].display_name | Point cloud |
| concepts[2].id | https://openalex.org/C21308566 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6778937578201294 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7169365 |
| concepts[2].display_name | Permutation (music) |
| concepts[3].id | https://openalex.org/C28719098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5893759727478027 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[3].display_name | Point (geometry) |
| concepts[4].id | https://openalex.org/C79974875 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5724879503250122 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[4].display_name | Cloud computing |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5324180126190186 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C84114770 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5105713605880737 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[6].display_name | Quantum |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.47882941365242004 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C121864883 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34170928597450256 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[8].display_name | Statistical physics |
| concepts[9].id | https://openalex.org/C33332235 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3378635346889496 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q18362 |
| concepts[9].display_name | Theoretical physics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3353991210460663 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3082164525985718 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.29915300011634827 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19031721353530884 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10033169388771057 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C24890656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[16].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/homogeneous-space |
| keywords[0].score | 0.7888131737709045 |
| keywords[0].display_name | Homogeneous space |
| keywords[1].id | https://openalex.org/keywords/point-cloud |
| keywords[1].score | 0.6987465620040894 |
| keywords[1].display_name | Point cloud |
| keywords[2].id | https://openalex.org/keywords/permutation |
| keywords[2].score | 0.6778937578201294 |
| keywords[2].display_name | Permutation (music) |
| keywords[3].id | https://openalex.org/keywords/point |
| keywords[3].score | 0.5893759727478027 |
| keywords[3].display_name | Point (geometry) |
| keywords[4].id | https://openalex.org/keywords/cloud-computing |
| keywords[4].score | 0.5724879503250122 |
| keywords[4].display_name | Cloud computing |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5324180126190186 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/quantum |
| keywords[6].score | 0.5105713605880737 |
| keywords[6].display_name | Quantum |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.47882941365242004 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/statistical-physics |
| keywords[8].score | 0.34170928597450256 |
| keywords[8].display_name | Statistical physics |
| keywords[9].id | https://openalex.org/keywords/theoretical-physics |
| keywords[9].score | 0.3378635346889496 |
| keywords[9].display_name | Theoretical physics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3353991210460663 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.3082164525985718 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.29915300011634827 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[13].score | 0.19031721353530884 |
| keywords[13].display_name | Quantum mechanics |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.10033169388771057 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.11150 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.11150 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.11150 |
| locations[1].id | doi:10.48550/arxiv.2405.11150 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.11150 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114626468 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7096-2158 |
| authorships[0].author.display_name | Zhelun Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Zhelun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085160687 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4515-2115 |
| authorships[1].author.display_name | Lento Nagano |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nagano, Lento |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056675059 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6520-8070 |
| authorships[2].author.display_name | K. Terashi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Terashi, Koji |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.11150 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enforcing exact permutation and rotational symmetries in the application of quantum neural network on point cloud datasets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14158 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9519000053405762 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Optical Systems and Laser Technology |
| related_works | https://openalex.org/W4244478748, https://openalex.org/W4223488648, https://openalex.org/W2134969820, https://openalex.org/W2251605416, https://openalex.org/W2560439919, https://openalex.org/W4389340727, https://openalex.org/W3150465815, https://openalex.org/W1997222214, https://openalex.org/W2802581102, https://openalex.org/W4205786897 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.11150 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.11150 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.11150 |
| primary_location.id | pmh:oai:arXiv.org:2405.11150 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.11150 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.11150 |
| publication_date | 2024-05-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 23 |
| abstract_inverted_index.a | 82, 92 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.in | 2, 17, 26, 111 |
| abstract_inverted_index.is | 29, 70, 98 |
| abstract_inverted_index.of | 5, 13, 20, 32, 44, 57, 67, 86, 95, 114 |
| abstract_inverted_index.on | 52 |
| abstract_inverted_index.to | 81, 101 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.QNN | 96 |
| abstract_inverted_index.The | 64 |
| abstract_inverted_index.all | 72 |
| abstract_inverted_index.and | 104, 118 |
| abstract_inverted_index.are | 40, 79 |
| abstract_inverted_index.its | 107 |
| abstract_inverted_index.key | 65 |
| abstract_inverted_index.the | 3, 11, 18, 30, 54, 62, 68, 112, 128 |
| abstract_inverted_index.QNN. | 63 |
| abstract_inverted_index.area | 28 |
| abstract_inverted_index.both | 102 |
| abstract_inverted_index.have | 9 |
| abstract_inverted_index.idea | 12 |
| abstract_inverted_index.into | 61 |
| abstract_inverted_index.that | 39, 71, 97 |
| abstract_inverted_index.this | 27, 48 |
| abstract_inverted_index.with | 76, 84, 106, 127 |
| abstract_inverted_index.(QNN) | 38 |
| abstract_inverted_index.cloud | 59 |
| abstract_inverted_index.field | 4 |
| abstract_inverted_index.focus | 51 |
| abstract_inverted_index.image | 116 |
| abstract_inverted_index.inner | 88 |
| abstract_inverted_index.input | 45 |
| abstract_inverted_index.novel | 93 |
| abstract_inverted_index.point | 58 |
| abstract_inverted_index.under | 42 |
| abstract_inverted_index.work, | 49 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.inputs | 78, 85 |
| abstract_inverted_index.neural | 36 |
| abstract_inverted_index.vector | 77, 87 |
| abstract_inverted_index.Lorentz | 130 |
| abstract_inverted_index.crucial | 24 |
| abstract_inverted_index.decays, | 122 |
| abstract_inverted_index.exactly | 99 |
| abstract_inverted_index.insight | 66 |
| abstract_inverted_index.machine | 7 |
| abstract_inverted_index.provide | 91 |
| abstract_inverted_index.quantum | 6, 21, 35 |
| abstract_inverted_index.approach | 69 |
| abstract_inverted_index.datasets | 60 |
| abstract_inverted_index.efficacy | 108 |
| abstract_inverted_index.encoding | 53 |
| abstract_inverted_index.function | 83 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.networks | 37 |
| abstract_inverted_index.objects. | 46 |
| abstract_inverted_index.particle | 121 |
| abstract_inverted_index.physical | 15 |
| abstract_inverted_index.problems | 113 |
| abstract_inverted_index.produced | 123 |
| abstract_inverted_index.promoted | 10 |
| abstract_inverted_index.symmetry | 56 |
| abstract_inverted_index.$SO(1,3)$ | 129 |
| abstract_inverted_index.circuits. | 22 |
| abstract_inverted_index.functions | 75 |
| abstract_inverted_index.invariant | 74, 100 |
| abstract_inverted_index.milestone | 25 |
| abstract_inverted_index.products. | 89 |
| abstract_inverted_index.rotations | 103 |
| abstract_inverted_index.structure | 19, 94 |
| abstract_inverted_index.symmetry. | 131 |
| abstract_inverted_index.equivalent | 80 |
| abstract_inverted_index.rotational | 55 |
| abstract_inverted_index.symmetries | 16 |
| abstract_inverted_index.collisions, | 126 |
| abstract_inverted_index.equivariant | 34, 41 |
| abstract_inverted_index.high-energy | 120 |
| abstract_inverted_index.identifying | 119 |
| abstract_inverted_index.numerically | 110 |
| abstract_inverted_index.realization | 31 |
| abstract_inverted_index.demonstrated | 109 |
| abstract_inverted_index.developments | 1 |
| abstract_inverted_index.permutations | 43 |
| abstract_inverted_index.rotationally | 73 |
| abstract_inverted_index.incorporating | 14 |
| abstract_inverted_index.permutations, | 105 |
| abstract_inverted_index.proton-proton | 125 |
| abstract_inverted_index.classifications | 117 |
| abstract_inverted_index.two-dimensional | 115 |
| abstract_inverted_index.$S_{n}$-permutation | 33 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |