Enhanced automated Alzheimer’s disease detection from MRI images by exploring handcrafted and transfer learning feature extraction methods Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.11591/ijece.v15i2.pp1557-1571
The rising prevalence of Alzheimer’s disease (AD) poses a significant global health challenge. Early detection of AD enables appropriate and timely treatment to slow disease progression. In this paper, we propose an enhanced procedure for automated AD detection from magnetic resonance imaging (MRI) images, focusing on two primary tasks: feature extraction and classification. For feature extraction, we have investigated two categories of methods: handcrafted techniques and those based on pre-trained convolutional neural network (CNN) models. Handcrafted methods are preceded by a preprocessing step to improve the MRI image contrast, while the pre-trained CNN models were adapted by utilizing only a part of the models as feature extractors, incorporating a global average pooling (GAP) layer to flatten the feature vector and reduce its dimensionality. For classification, we employed three different algorithms as binary classifiers to detect AD from MRI images. Our results demonstrate that the support vector machine (SVM) classifier achieves a classification accuracy of 99.92% with Gabor features and 100% with ResNet101 CNN features, competing with existing methods. This study underscores the effectiveness of feature extraction using Gabor filters, as well as those based on the adapted pre-trained CNN models, for accurate AD detection from MRI images, offering significant advancements in early diagnosis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijece.v15i2.pp1557-1571
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406838399
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406838399Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijece.v15i2.pp1557-1571Digital Object Identifier
- Title
-
Enhanced automated Alzheimer’s disease detection from MRI images by exploring handcrafted and transfer learning feature extraction methodsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-26Full publication date if available
- Authors
-
Touati Menad, Mohamed Bentoumi, Arezki Larbi, Malika Mimi, Abdelmalik Taleb‐AhmedList of authors in order
- Landing page
-
https://doi.org/10.11591/ijece.v15i2.pp1557-1571Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11591/ijece.v15i2.pp1557-1571Direct OA link when available
- Concepts
-
Transfer of learning, Computer science, Artificial intelligence, Feature extraction, Feature (linguistics), Pattern recognition (psychology), Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406838399 |
|---|---|
| doi | https://doi.org/10.11591/ijece.v15i2.pp1557-1571 |
| ids.doi | https://doi.org/10.11591/ijece.v15i2.pp1557-1571 |
| ids.openalex | https://openalex.org/W4406838399 |
| fwci | 3.45133589 |
| type | article |
| title | Enhanced automated Alzheimer’s disease detection from MRI images by exploring handcrafted and transfer learning feature extraction methods |
| biblio.issue | 2 |
| biblio.volume | 15 |
| biblio.last_page | 1557 |
| biblio.first_page | 1557 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9891999959945679 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9175999760627747 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.705390989780426 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6317201256752014 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6279494166374207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6127200126647949 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5447831749916077 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48538005352020264 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C41895202 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[6].display_name | Linguistics |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.705390989780426 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6317201256752014 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6279494166374207 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.6127200126647949 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5447831749916077 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.48538005352020264 |
| keywords[5].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.11591/ijece.v15i2.pp1557-1571 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235676 |
| locations[0].source.issn | 2722-256X, 2722-2578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2722-256X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijece.v15i2.pp1557-1571 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5116037827 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-3557-0603 |
| authorships[0].author.display_name | Touati Menad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Touati Menad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072939952 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9383-1556 |
| authorships[1].author.display_name | Mohamed Bentoumi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed Bentoumi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058502395 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-4256-9761 |
| authorships[2].author.display_name | Arezki Larbi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Arezki Larbi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109584213 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9675-2252 |
| authorships[3].author.display_name | Malika Mimi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Malika Mimi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088214859 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7218-3799 |
| authorships[4].author.display_name | Abdelmalik Taleb‐Ahmed |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Abdelmalik Taleb Ahmed |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11591/ijece.v15i2.pp1557-1571 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced automated Alzheimer’s disease detection from MRI images by exploring handcrafted and transfer learning feature extraction methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9891999959945679 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W2601157893, https://openalex.org/W2373006798, https://openalex.org/W2131735617, https://openalex.org/W2056912418, https://openalex.org/W2033213769, https://openalex.org/W4312376745, https://openalex.org/W2136016640, https://openalex.org/W2049538278 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijece.v15i2.pp1557-1571 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235676 |
| best_oa_location.source.issn | 2722-256X, 2722-2578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2722-256X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijece.v15i2.pp1557-1571 |
| primary_location.id | doi:10.11591/ijece.v15i2.pp1557-1571 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235676 |
| primary_location.source.issn | 2722-256X, 2722-2578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2722-256X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Electrical and Computer Engineering (IJECE) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijece.v15i2.pp1557-1571 |
| publication_date | 2025-01-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 80, 99, 108, 150 |
| abstract_inverted_index.AD | 16, 36, 135, 192 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.an | 31 |
| abstract_inverted_index.as | 104, 130, 179, 181 |
| abstract_inverted_index.by | 79, 96 |
| abstract_inverted_index.in | 200 |
| abstract_inverted_index.of | 3, 15, 61, 101, 153, 173 |
| abstract_inverted_index.on | 45, 68, 184 |
| abstract_inverted_index.to | 22, 83, 114, 133 |
| abstract_inverted_index.we | 29, 56, 125 |
| abstract_inverted_index.CNN | 92, 162, 188 |
| abstract_inverted_index.For | 53, 123 |
| abstract_inverted_index.MRI | 86, 137, 195 |
| abstract_inverted_index.Our | 139 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 19, 51, 65, 119, 158 |
| abstract_inverted_index.are | 77 |
| abstract_inverted_index.for | 34, 190 |
| abstract_inverted_index.its | 121 |
| abstract_inverted_index.the | 85, 90, 102, 116, 143, 171, 185 |
| abstract_inverted_index.two | 46, 59 |
| abstract_inverted_index.(AD) | 6 |
| abstract_inverted_index.100% | 159 |
| abstract_inverted_index.This | 168 |
| abstract_inverted_index.from | 38, 136, 194 |
| abstract_inverted_index.have | 57 |
| abstract_inverted_index.only | 98 |
| abstract_inverted_index.part | 100 |
| abstract_inverted_index.slow | 23 |
| abstract_inverted_index.step | 82 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.well | 180 |
| abstract_inverted_index.were | 94 |
| abstract_inverted_index.with | 155, 160, 165 |
| abstract_inverted_index.(CNN) | 73 |
| abstract_inverted_index.(GAP) | 112 |
| abstract_inverted_index.(MRI) | 42 |
| abstract_inverted_index.(SVM) | 147 |
| abstract_inverted_index.Early | 13 |
| abstract_inverted_index.Gabor | 156, 177 |
| abstract_inverted_index.based | 67, 183 |
| abstract_inverted_index.early | 201 |
| abstract_inverted_index.image | 87 |
| abstract_inverted_index.layer | 113 |
| abstract_inverted_index.poses | 7 |
| abstract_inverted_index.study | 169 |
| abstract_inverted_index.those | 66, 182 |
| abstract_inverted_index.three | 127 |
| abstract_inverted_index.using | 176 |
| abstract_inverted_index.while | 89 |
| abstract_inverted_index.99.92% | 154 |
| abstract_inverted_index.binary | 131 |
| abstract_inverted_index.detect | 134 |
| abstract_inverted_index.global | 10, 109 |
| abstract_inverted_index.health | 11 |
| abstract_inverted_index.models | 93, 103 |
| abstract_inverted_index.neural | 71 |
| abstract_inverted_index.paper, | 28 |
| abstract_inverted_index.reduce | 120 |
| abstract_inverted_index.rising | 1 |
| abstract_inverted_index.tasks: | 48 |
| abstract_inverted_index.timely | 20 |
| abstract_inverted_index.vector | 118, 145 |
| abstract_inverted_index.adapted | 95, 186 |
| abstract_inverted_index.average | 110 |
| abstract_inverted_index.disease | 5, 24 |
| abstract_inverted_index.enables | 17 |
| abstract_inverted_index.feature | 49, 54, 105, 117, 174 |
| abstract_inverted_index.flatten | 115 |
| abstract_inverted_index.images, | 43, 196 |
| abstract_inverted_index.images. | 138 |
| abstract_inverted_index.imaging | 41 |
| abstract_inverted_index.improve | 84 |
| abstract_inverted_index.machine | 146 |
| abstract_inverted_index.methods | 76 |
| abstract_inverted_index.models, | 189 |
| abstract_inverted_index.models. | 74 |
| abstract_inverted_index.network | 72 |
| abstract_inverted_index.pooling | 111 |
| abstract_inverted_index.primary | 47 |
| abstract_inverted_index.propose | 30 |
| abstract_inverted_index.results | 140 |
| abstract_inverted_index.support | 144 |
| abstract_inverted_index.accuracy | 152 |
| abstract_inverted_index.accurate | 191 |
| abstract_inverted_index.achieves | 149 |
| abstract_inverted_index.employed | 126 |
| abstract_inverted_index.enhanced | 32 |
| abstract_inverted_index.existing | 166 |
| abstract_inverted_index.features | 157 |
| abstract_inverted_index.filters, | 178 |
| abstract_inverted_index.focusing | 44 |
| abstract_inverted_index.magnetic | 39 |
| abstract_inverted_index.methods. | 167 |
| abstract_inverted_index.methods: | 62 |
| abstract_inverted_index.offering | 197 |
| abstract_inverted_index.preceded | 78 |
| abstract_inverted_index.ResNet101 | 161 |
| abstract_inverted_index.automated | 35 |
| abstract_inverted_index.competing | 164 |
| abstract_inverted_index.contrast, | 88 |
| abstract_inverted_index.detection | 14, 37, 193 |
| abstract_inverted_index.different | 128 |
| abstract_inverted_index.features, | 163 |
| abstract_inverted_index.procedure | 33 |
| abstract_inverted_index.resonance | 40 |
| abstract_inverted_index.treatment | 21 |
| abstract_inverted_index.utilizing | 97 |
| abstract_inverted_index.algorithms | 129 |
| abstract_inverted_index.categories | 60 |
| abstract_inverted_index.challenge. | 12 |
| abstract_inverted_index.classifier | 148 |
| abstract_inverted_index.diagnosis. | 202 |
| abstract_inverted_index.extraction | 50, 175 |
| abstract_inverted_index.prevalence | 2 |
| abstract_inverted_index.techniques | 64 |
| abstract_inverted_index.Handcrafted | 75 |
| abstract_inverted_index.appropriate | 18 |
| abstract_inverted_index.classifiers | 132 |
| abstract_inverted_index.demonstrate | 141 |
| abstract_inverted_index.extraction, | 55 |
| abstract_inverted_index.extractors, | 106 |
| abstract_inverted_index.handcrafted | 63 |
| abstract_inverted_index.pre-trained | 69, 91, 187 |
| abstract_inverted_index.significant | 9, 198 |
| abstract_inverted_index.underscores | 170 |
| abstract_inverted_index.advancements | 199 |
| abstract_inverted_index.investigated | 58 |
| abstract_inverted_index.progression. | 25 |
| abstract_inverted_index.Alzheimer’s | 4 |
| abstract_inverted_index.convolutional | 70 |
| abstract_inverted_index.effectiveness | 172 |
| abstract_inverted_index.incorporating | 107 |
| abstract_inverted_index.preprocessing | 81 |
| abstract_inverted_index.classification | 151 |
| abstract_inverted_index.classification, | 124 |
| abstract_inverted_index.classification. | 52 |
| abstract_inverted_index.dimensionality. | 122 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.76852276 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |