Enhanced credit risk prediction using deep learning and SMOTE-ENN resampling Article Swipe
Idowu Aruleba
,
Yanxia Sun
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mlwa.2025.100692
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mlwa.2025.100692
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.mlwa.2025.100692
- OA Status
- gold
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411730022
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411730022Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.mlwa.2025.100692Digital Object Identifier
- Title
-
Enhanced credit risk prediction using deep learning and SMOTE-ENN resamplingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-27Full publication date if available
- Authors
-
Idowu Aruleba, Yanxia SunList of authors in order
- Landing page
-
https://doi.org/10.1016/j.mlwa.2025.100692Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.mlwa.2025.100692Direct OA link when available
- Concepts
-
Resampling, Artificial intelligence, Computer science, Machine learning, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411730022 |
|---|---|
| doi | https://doi.org/10.1016/j.mlwa.2025.100692 |
| ids.doi | https://doi.org/10.1016/j.mlwa.2025.100692 |
| ids.openalex | https://openalex.org/W4411730022 |
| fwci | 0.0 |
| type | article |
| title | Enhanced credit risk prediction using deep learning and SMOTE-ENN resampling |
| biblio.issue | |
| biblio.volume | 21 |
| biblio.last_page | 100692 |
| biblio.first_page | 100692 |
| topics[0].id | https://openalex.org/T11653 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1402 |
| topics[0].subfield.display_name | Accounting |
| topics[0].display_name | Financial Distress and Bankruptcy Prediction |
| topics[1].id | https://openalex.org/T11652 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Imbalanced Data Classification Techniques |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9474999904632568 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C150921843 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7246758341789246 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1170431 |
| concepts[0].display_name | Resampling |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.62474524974823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5670206546783447 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5049462914466858 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.3494902551174164 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/resampling |
| keywords[0].score | 0.7246758341789246 |
| keywords[0].display_name | Resampling |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.62474524974823 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5670206546783447 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5049462914466858 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.3494902551174164 |
| keywords[4].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1016/j.mlwa.2025.100692 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201048 |
| locations[0].source.issn | 2666-8270 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-8270 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning with Applications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning with Applications |
| locations[0].landing_page_url | https://doi.org/10.1016/j.mlwa.2025.100692 |
| locations[1].id | pmh:oai:doaj.org/article:1cf9bdd251454458a3df93d3d5cd6b14 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Machine Learning with Applications, Vol 21, Iss , Pp 100692- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/1cf9bdd251454458a3df93d3d5cd6b14 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005433914 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9167-0779 |
| authorships[0].author.display_name | Idowu Aruleba |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Idowu Aruleba |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091303313 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3455-9625 |
| authorships[1].author.display_name | Yanxia Sun |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yanxia Sun |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.mlwa.2025.100692 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced credit risk prediction using deep learning and SMOTE-ENN resampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11653 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1402 |
| primary_topic.subfield.display_name | Accounting |
| primary_topic.display_name | Financial Distress and Bankruptcy Prediction |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3008199583, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.mlwa.2025.100692 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201048 |
| best_oa_location.source.issn | 2666-8270 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-8270 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning with Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning with Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.mlwa.2025.100692 |
| primary_location.id | doi:10.1016/j.mlwa.2025.100692 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201048 |
| primary_location.source.issn | 2666-8270 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-8270 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning with Applications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning with Applications |
| primary_location.landing_page_url | https://doi.org/10.1016/j.mlwa.2025.100692 |
| publication_date | 2025-06-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4206330621, https://openalex.org/W2788025656, https://openalex.org/W4390581705, https://openalex.org/W3096019139, https://openalex.org/W3191161603, https://openalex.org/W4409744617, https://openalex.org/W4392358344, https://openalex.org/W2923437336, https://openalex.org/W6729923770, https://openalex.org/W3039307496, https://openalex.org/W4394564350, https://openalex.org/W6798417551, https://openalex.org/W3148119887, https://openalex.org/W4391436932, https://openalex.org/W4210242534, https://openalex.org/W6847897738, https://openalex.org/W4320481151, https://openalex.org/W2943917172, https://openalex.org/W4403764906, https://openalex.org/W3174530348, https://openalex.org/W2936503027, https://openalex.org/W2004362343, https://openalex.org/W3124539583, https://openalex.org/W4294543738, https://openalex.org/W4390906246, https://openalex.org/W2618530766, https://openalex.org/W6749176884, https://openalex.org/W4385999896, https://openalex.org/W4282977196, https://openalex.org/W3093314742, https://openalex.org/W4322754167, https://openalex.org/W4388210314, https://openalex.org/W4220910797, https://openalex.org/W6798510050, https://openalex.org/W4400524829, https://openalex.org/W4400416066, https://openalex.org/W4399800820, https://openalex.org/W4360995349, https://openalex.org/W6873096017, https://openalex.org/W4280577524, https://openalex.org/W4221074700, https://openalex.org/W4396529039, https://openalex.org/W3006252432, https://openalex.org/W4399939200, https://openalex.org/W6861547301, https://openalex.org/W4387937068, https://openalex.org/W2970989889, https://openalex.org/W3163311383, https://openalex.org/W4295733249, https://openalex.org/W4322746787, https://openalex.org/W4389058774, https://openalex.org/W4390049924, https://openalex.org/W2524373218, https://openalex.org/W2770877241, https://openalex.org/W2803441009, https://openalex.org/W3138423578, https://openalex.org/W3090418931, https://openalex.org/W3203259065, https://openalex.org/W4390805998, https://openalex.org/W3216475965, https://openalex.org/W2056221673, https://openalex.org/W4388479699, https://openalex.org/W2809254203, https://openalex.org/W3164508800, https://openalex.org/W2743680082, https://openalex.org/W3152893301, https://openalex.org/W4323927347, https://openalex.org/W3183082635, https://openalex.org/W4241366218, https://openalex.org/W4391382092 |
| referenced_works_count | 70 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.36040101 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |