Enhanced Dempster-Shafer Classifier with Metaheuristics Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17718303
Dempster-Shafer Classifier with Metaheuristic Optimization A high-performance, Scikit-learn compatible implementation of a classifier based on Dempster-Shafer Theory (DST). This model utilizes Metaheuristic Algorithms (RSA, HBA, OPA) to optimize belief mass assignments, minimizing Binary Cross-Entropy (BCE) loss. Key computational kernels are accelerated using Numba JIT compilation, ensuring competitive training and inference speeds comparable to standard machine learning models. 🚀 Key Features Hybrid Architecture: Combines Evidential Reasoning (DST) with Evolutionary Optimization. Scikit-learn API: Fully compatible with GridSearchCV, Pipeline, and other sklearn utilities. High Performance: Core mathematical operations (Dempster's combination rule, normalization) are JIT-compiled using numba. Multiple Optimizers: Includes three state-of-the-art metaheuristics: RSA: Reptile Search Algorithm (Default) HBA: Honey Badger Algorithm OPA: Orca Predation Algorithm Interpretable: The model learns explicit mass assignments for feature intervals, offering a "white-box" alternative to neural networks. 📦 Dependencies To use this classifier, you need the following libraries: pip install numpy scikit-learn numba ⚙️ API Reference DempsterShaferClassifier(M=5, optimizer='RSA', n_iterations=100, n_agents=30, ...) Parameter Type Default Description M int 5 Number of equidistant division points (bins) per feature. optimizer str 'RSA' The metaheuristic algorithm to use. Options: 'RSA', 'HBA', 'OPA'. n_iterations int 100 Maximum number of iterations for the optimization loop. n_agents int 30 Population size (number of agents) in the metaheuristic. random_state int None Seed for reproducibility. custom_dim int None (Advanced) Manually override search space dimension. ⚡ Quick Start Here is a minimal example of how to use the DempsterShaferClassifier with Iris Dataset. import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFoldfrom sklearn.preprocessing import StandardScalerfrom sklearn.pipeline import Pipelinefrom sklearn.metrics import classification_report, accuracy_score # Import local class (Ensure ds_classifier.py is in the same directory)from ds_classifier import DempsterShaferClassifier def print_model_masses(pipeline, feature_names=None): """ Prints the learned belief masses for each feature interval. Extracts the optimized mass vectors from the fitted model and displays them in a human-readable format to facilitate interpretation. """ # Access the classifier step within the pipeline model = pipeline.best_estimator_.named_steps['ds_clf'] if not model.is_fitted_: return # Retrieve model dimensions n_feat = model.n_features_in_ n_class = len(model.classes_) M = model.M # Reshape the flat mass array: (Features, Classes + Omega, Intervals) raw_masses = model._best_masses_ reshaped = raw_masses.reshape(n_feat, n_class + 1, M + 1) # Transpose for easier iteration: (Features, Intervals, Classes + Omega) final_struct = reshaped.transpose(0, 2, 1) print("\n" + "="*60 + "\n🧠 INTERPRETATION: LEARNED BELIEF MASSES\n" + "="*60) # Create labels for classes plus the Uncertainty (Omega) term cls_labels = list(model.classes_) + ['Ω'] for f_idx in range(n_feat): # Determine feature name name = feature_names[f_idx] if feature_names is not None else f"F{f_idx}" print(f"\n🔹 {name.upper()}") # Get the calculated division points (bin edges) for this feature divs = model._feature_division_points_[f_idx] for b_idx in range(M + 1): # Format the interval range string for display if b_idx == 0: rng_str = f"(-inf, {divs[0]:.2f}]" elif b_idx == M: rng_str = f"({divs[-1]:.2f}, +inf)" else: rng_str = f"({divs[b_idx-1]:.2f}, {divs[b_idx]:.2f}]" # Get masses for the current interval m_vec = final_struct[f_idx, b_idx, :] # Format the mass values m_str = " | ".join([f"{l}:{v:.2f}" for l, v in zip(cls_labels, m_vec)])&l
Related Topics
- Type
- other
- Landing Page
- https://doi.org/10.5281/zenodo.17718303
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7107865430
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7107865430Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17718303Digital Object Identifier
- Title
-
Enhanced Dempster-Shafer Classifier with Metaheuristics OptimizationWork title
- Type
-
otherOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
Flores Araya, Emilio, Ramos-Rojas, Loreto, Veloz Alejandro, Olivares RodrigoList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17718303Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17718303Direct OA link when available
- Concepts
-
Metaheuristic, Artificial intelligence, Classifier (UML), Computer science, Machine learning, Inference, Simulated annealing, Equidistant, Pattern recognition (psychology), Algorithm, Mathematical optimization, Artificial neural network, Parallel metaheuristic, Binary number, Feature (linguistics), Key (lock), Data mining, Training set, Pareto principle, Optimization problem, Binary classification, Feature selection, Automation, Evolutionary algorithm, Supervised learning, Global optimizationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7107865430 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17718303 |
| ids.openalex | https://openalex.org/W7107865430 |
| fwci | |
| type | other |
| title | Enhanced Dempster-Shafer Classifier with Metaheuristics Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C109718341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7796863317489624 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[0].display_name | Metaheuristic |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6374091506004333 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C95623464 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6294206380844116 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[2].display_name | Classifier (UML) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6282373666763306 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49952432513237 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44061845541000366 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C126980161 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4106033146381378 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q863783 |
| concepts[6].display_name | Simulated annealing |
| concepts[7].id | https://openalex.org/C158245278 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40015339851379395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4386982 |
| concepts[7].display_name | Equidistant |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3935128152370453 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3576001822948456 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3566882908344269 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3439646363258362 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C28767586 |
| concepts[12].level | 4 |
| concepts[12].score | 0.3167373836040497 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7135006 |
| concepts[12].display_name | Parallel metaheuristic |
| concepts[13].id | https://openalex.org/C48372109 |
| concepts[13].level | 2 |
| concepts[13].score | 0.30855825543403625 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[13].display_name | Binary number |
| concepts[14].id | https://openalex.org/C2776401178 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3026827573776245 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[14].display_name | Feature (linguistics) |
| concepts[15].id | https://openalex.org/C26517878 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3023655116558075 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[15].display_name | Key (lock) |
| concepts[16].id | https://openalex.org/C124101348 |
| concepts[16].level | 1 |
| concepts[16].score | 0.299796998500824 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[16].display_name | Data mining |
| concepts[17].id | https://openalex.org/C51632099 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2992299497127533 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[17].display_name | Training set |
| concepts[18].id | https://openalex.org/C137635306 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2847117781639099 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q182667 |
| concepts[18].display_name | Pareto principle |
| concepts[19].id | https://openalex.org/C137836250 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2807730734348297 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[19].display_name | Optimization problem |
| concepts[20].id | https://openalex.org/C66905080 |
| concepts[20].level | 3 |
| concepts[20].score | 0.28000858426094055 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[20].display_name | Binary classification |
| concepts[21].id | https://openalex.org/C148483581 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2775517404079437 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[21].display_name | Feature selection |
| concepts[22].id | https://openalex.org/C115901376 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2738893926143646 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[22].display_name | Automation |
| concepts[23].id | https://openalex.org/C159149176 |
| concepts[23].level | 2 |
| concepts[23].score | 0.27282950282096863 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[23].display_name | Evolutionary algorithm |
| concepts[24].id | https://openalex.org/C136389625 |
| concepts[24].level | 3 |
| concepts[24].score | 0.2669791281223297 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[24].display_name | Supervised learning |
| concepts[25].id | https://openalex.org/C164752517 |
| concepts[25].level | 2 |
| concepts[25].score | 0.25794002413749695 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q5570875 |
| concepts[25].display_name | Global optimization |
| keywords[0].id | https://openalex.org/keywords/metaheuristic |
| keywords[0].score | 0.7796863317489624 |
| keywords[0].display_name | Metaheuristic |
| keywords[1].id | https://openalex.org/keywords/classifier |
| keywords[1].score | 0.6294206380844116 |
| keywords[1].display_name | Classifier (UML) |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.44061845541000366 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/simulated-annealing |
| keywords[3].score | 0.4106033146381378 |
| keywords[3].display_name | Simulated annealing |
| keywords[4].id | https://openalex.org/keywords/equidistant |
| keywords[4].score | 0.40015339851379395 |
| keywords[4].display_name | Equidistant |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3935128152370453 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.3439646363258362 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/parallel-metaheuristic |
| keywords[7].score | 0.3167373836040497 |
| keywords[7].display_name | Parallel metaheuristic |
| language | |
| locations[0].id | pmh:oai:zenodo.org:17718303 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17718303 |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Flores Araya, Emilio |
| authorships[0].countries | CL, US |
| authorships[0].institutions[0].id | https://openalex.org/I79274474 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/00h9jrb69 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79274474 |
| authorships[0].institutions[0].country_code | CL |
| authorships[0].institutions[0].display_name | University of Valparaíso |
| authorships[0].institutions[1].id | https://openalex.org/I149744451 |
| authorships[0].institutions[1].ror | https://ror.org/https://ror.org/01pp0fx48 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I149744451 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Valparaiso University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Flores Araya, Emilio |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ramos-Rojas, Loreto |
| authorships[1].countries | CL |
| authorships[1].institutions[0].id | https://openalex.org/I189977406 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/03v0qd864 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189977406 |
| authorships[1].institutions[0].country_code | CL |
| authorships[1].institutions[0].display_name | Universidad de Los Andes, Chile |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ramos-Rojas, Loreto |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2742548000 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Veloz Alejandro |
| authorships[2].countries | CL, US |
| authorships[2].institutions[0].id | https://openalex.org/I79274474 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/00h9jrb69 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79274474 |
| authorships[2].institutions[0].country_code | CL |
| authorships[2].institutions[0].display_name | University of Valparaíso |
| authorships[2].institutions[1].id | https://openalex.org/I149744451 |
| authorships[2].institutions[1].ror | https://ror.org/https://ror.org/01pp0fx48 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I149744451 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Valparaiso University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Veloz, Alejandro |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2745466104 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Olivares Rodrigo |
| authorships[3].countries | CL, US |
| authorships[3].institutions[0].id | https://openalex.org/I149744451 |
| authorships[3].institutions[0].ror | https://ror.org/https://ror.org/01pp0fx48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149744451 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Valparaiso University |
| authorships[3].institutions[1].id | https://openalex.org/I79274474 |
| authorships[3].institutions[1].ror | https://ror.org/https://ror.org/00h9jrb69 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I79274474 |
| authorships[3].institutions[1].country_code | CL |
| authorships[3].institutions[1].display_name | University of Valparaíso |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Olivares, Rodrigo |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17718303 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | Enhanced Dempster-Shafer Classifier with Metaheuristics Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T00:07:19.613710 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:zenodo.org:17718303 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17718303 |
| primary_location.id | pmh:oai:zenodo.org:17718303 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17718303 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index." | 662 |
| abstract_inverted_index.# | 362, 385, 403, 430, 461, 486, 514, 548, 623, 650 |
| abstract_inverted_index.+ | 411, 423, 426, 438, 449, 451, 457, 475, 541 |
| abstract_inverted_index.= | 372, 391, 395, 399, 416, 420, 442, 473, 494, 529, 573, 593, 610, 636, 661 |
| abstract_inverted_index.M | 398, 425 |
| abstract_inverted_index.a | 10, 140, 269, 353 |
| abstract_inverted_index.v | 667 |
| abstract_inverted_index.| | 663 |
| abstract_inverted_index.1, | 424 |
| abstract_inverted_index.2, | 444 |
| abstract_inverted_index.== | 563, 583 |
| abstract_inverted_index.as | 285, 288 |
| abstract_inverted_index.if | 376, 496, 561 |
| abstract_inverted_index.in | 237, 315, 352, 481, 539, 668 |
| abstract_inverted_index.is | 268, 314, 498 |
| abstract_inverted_index.l, | 666 |
| abstract_inverted_index.of | 9, 193, 221, 235, 272 |
| abstract_inverted_index.on | 13 |
| abstract_inverted_index.to | 25, 51, 143, 208, 274, 356 |
| abstract_inverted_index.API | 168 |
| abstract_inverted_index.Get | 515, 624 |
| abstract_inverted_index.JIT | 42 |
| abstract_inverted_index.Key | 57 |
| abstract_inverted_index.The | 130 |
| abstract_inverted_index.and | 47, 79, 348 |
| abstract_inverted_index.are | 38, 94 |
| abstract_inverted_index.for | 136, 223, 246, 333, 432, 464, 479, 522, 537, 554, 626, 665 |
| abstract_inverted_index.how | 273 |
| abstract_inverted_index.not | 377, 499 |
| abstract_inverted_index.per | 198 |
| abstract_inverted_index.the | 156, 224, 238, 276, 316, 329, 340, 345, 364, 368, 405, 467, 516, 550, 627, 652 |
| abstract_inverted_index.use | 151, 275 |
| abstract_inverted_index.you | 154 |
| abstract_inverted_index.(bin | 520 |
| abstract_inverted_index.Core | 87 |
| abstract_inverted_index.HBA, | 23 |
| abstract_inverted_index.Iris | 279 |
| abstract_inverted_index.None | 500 |
| abstract_inverted_index.OPA) | 24 |
| abstract_inverted_index.Orca | 122 |
| abstract_inverted_index.This | 17 |
| abstract_inverted_index.divs | 528 |
| abstract_inverted_index.each | 334 |
| abstract_inverted_index.elif | 581 |
| abstract_inverted_index.else | 501 |
| abstract_inverted_index.flat | 406 |
| abstract_inverted_index.from | 344 |
| abstract_inverted_index.mass | 28, 134, 342, 407, 653 |
| abstract_inverted_index.name | 493 |
| abstract_inverted_index.need | 155 |
| abstract_inverted_index.plus | 466 |
| abstract_inverted_index.same | 317 |
| abstract_inverted_index.size | 233 |
| abstract_inverted_index.step | 366 |
| abstract_inverted_index.them | 351 |
| abstract_inverted_index.this | 152, 523 |
| abstract_inverted_index.use. | 209 |
| abstract_inverted_index.with | 2, 67, 76, 278 |
| abstract_inverted_index.(BCE) | 33 |
| abstract_inverted_index.(DST) | 66 |
| abstract_inverted_index.(RSA, | 22 |
| abstract_inverted_index.Fully | 74 |
| abstract_inverted_index.Honey | 116 |
| abstract_inverted_index.Quick | 265 |
| abstract_inverted_index.b_idx | 538, 562, 582 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.class | 311 |
| abstract_inverted_index.f_idx | 480 |
| abstract_inverted_index.local | 310 |
| abstract_inverted_index.m_str | 660 |
| abstract_inverted_index.m_vec | 635 |
| abstract_inverted_index.model | 18, 131, 347, 371, 387 |
| abstract_inverted_index.numpy | 163, 284 |
| abstract_inverted_index.other | 80 |
| abstract_inverted_index.range | 552 |
| abstract_inverted_index.rule, | 92 |
| abstract_inverted_index.space | 257 |
| abstract_inverted_index.three | 103 |
| abstract_inverted_index.using | 40, 96 |
| abstract_inverted_index."="*60 | 450 |
| abstract_inverted_index. | 325, 327, 338, 350, 359, 361, 370, 375, 379, 380, 381, 384, 389, 393, 397, 402, 414, 418, 429, 440, 447, 460, 471, 478, 483, 484, 485, 490, 491, 492, 503, 504, 505, 508, 509, 511, 512, 513, 525, 526, 527, 531, 532, 534, 535, 536, 543, 544, 545, 546, 547, 556, 557, 558, 559, 560, 565, 566, 567, 568, 569, 570, 571, 576, 577, 578, 579, 580, 585, 586, 587, 588, 589, 590, 591, 596, 597, 598, 599, 600, 602, 603, 604, 605, 606, 607, 608, 613, 614, 615, 616, 618, 619, 620, 621, 622, 630, 631, 632, 633, 634, 640, 641, 642, 643, 645, 646, 647, 648, 649, 655, 656, 657, 658, 659 |
| abstract_inverted_index.(bins) | 197 |
| abstract_inverted_index.Access | 363 |
| abstract_inverted_index.BELIEF | 455 |
| abstract_inverted_index.Badger | 117 |
| abstract_inverted_index.Binary | 31 |
| abstract_inverted_index.Create | 462 |
| abstract_inverted_index.Format | 549, 651 |
| abstract_inverted_index.Import | 309 |
| abstract_inverted_index.Omega, | 412 |
| abstract_inverted_index.Prints | 328 |
| abstract_inverted_index.Search | 110 |
| abstract_inverted_index.Theory | 15 |
| abstract_inverted_index.array: | 408 |
| abstract_inverted_index.b_idx, | 638 |
| abstract_inverted_index.belief | 27, 331 |
| abstract_inverted_index.easier | 433 |
| abstract_inverted_index.edges) | 521 |
| abstract_inverted_index.fitted | 346 |
| abstract_inverted_index.format | 355 |
| abstract_inverted_index.import | 291, 294, 299, 302, 305, 320 |
| abstract_inverted_index.labels | 463 |
| abstract_inverted_index.learns | 132 |
| abstract_inverted_index.masses | 332, 625 |
| abstract_inverted_index.n_feat | 390 |
| abstract_inverted_index.neural | 144 |
| abstract_inverted_index.number | 220 |
| abstract_inverted_index.pandas | 287 |
| abstract_inverted_index.points | 196, 519 |
| abstract_inverted_index.search | 256 |
| abstract_inverted_index.speeds | 49 |
| abstract_inverted_index.string | 553 |
| abstract_inverted_index.within | 367 |
| abstract_inverted_index."\n🧠 | 452 |
| abstract_inverted_index.(Ensure | 312 |
| abstract_inverted_index.(Omega) | 469 |
| abstract_inverted_index.(number | 234 |
| abstract_inverted_index.Classes | 410, 437 |
| abstract_inverted_index.LEARNED | 454 |
| abstract_inverted_index.Reptile | 109 |
| abstract_inverted_index.Reshape | 404 |
| abstract_inverted_index.agents) | 236 |
| abstract_inverted_index.classes | 465 |
| abstract_inverted_index.current | 628 |
| abstract_inverted_index.example | 271 |
| abstract_inverted_index.feature | 137, 335, 488 |
| abstract_inverted_index.install | 162 |
| abstract_inverted_index.kernels | 37 |
| abstract_inverted_index.learned | 330 |
| abstract_inverted_index.machine | 53 |
| abstract_inverted_index.minimal | 270 |
| abstract_inverted_index.n_class | 394, 422 |
| abstract_inverted_index.range(M | 540 |
| abstract_inverted_index.rng_str | 572, 592, 609 |
| abstract_inverted_index.sklearn | 81 |
| abstract_inverted_index.vectors | 343 |
| abstract_inverted_index.Combines | 63 |
| abstract_inverted_index.Extracts | 339 |
| abstract_inverted_index.Includes | 102 |
| abstract_inverted_index.Manually | 254 |
| abstract_inverted_index.Options: | 210 |
| abstract_inverted_index.Retrieve | 386 |
| abstract_inverted_index.division | 195, 518 |
| abstract_inverted_index.ensuring | 44 |
| abstract_inverted_index.explicit | 133 |
| abstract_inverted_index.f"(-inf, | 574 |
| abstract_inverted_index.interval | 551 |
| abstract_inverted_index.learning | 54 |
| abstract_inverted_index.offering | 139 |
| abstract_inverted_index.optimize | 26 |
| abstract_inverted_index.override | 255 |
| abstract_inverted_index.reshaped | 419 |
| abstract_inverted_index.standard | 52 |
| abstract_inverted_index.training | 46 |
| abstract_inverted_index.utilizes | 19 |
| abstract_inverted_index.Algorithm | 111 |
| abstract_inverted_index.Determine | 487 |
| abstract_inverted_index.MASSES\n" | 456 |
| abstract_inverted_index.Predation | 123 |
| abstract_inverted_index.Reasoning | 65 |
| abstract_inverted_index.Transpose | 431 |
| abstract_inverted_index.algorithm | 207 |
| abstract_inverted_index.following | 157 |
| abstract_inverted_index.inference | 48 |
| abstract_inverted_index.optimized | 341 |
| abstract_inverted_index.<li> | 60, 71, 84, 99, 107, 114, 120, 128 |
| abstract_inverted_index.<p>A | 5 |
| abstract_inverted_index.<tr> | 180, 188, 201, 215, 228, 241, 249 |
| abstract_inverted_index.<ul> | 59, 106 |
| abstract_inverted_index.(Features, | 409, 435 |
| abstract_inverted_index.Classifier | 1 |
| abstract_inverted_index.Evidential | 64 |
| abstract_inverted_index.Intervals, | 436 |
| abstract_inverted_index.calculated | 517 |
| abstract_inverted_index.classifier | 11, 365 |
| abstract_inverted_index.cls_labels | 472 |
| abstract_inverted_index.comparable | 50 |
| abstract_inverted_index.compatible | 75 |
| abstract_inverted_index.facilitate | 357 |
| abstract_inverted_index.intervals, | 138 |
| abstract_inverted_index.iteration: | 434 |
| abstract_inverted_index.iterations | 222 |
| abstract_inverted_index.minimizing | 30 |
| abstract_inverted_index.operations | 89 |
| abstract_inverted_index.print("\n" | 448 |
| abstract_inverted_index.raw_masses | 415 |
| abstract_inverted_index."white-box" | 141 |
| abstract_inverted_index.</li> | 70, 83, 98, 113, 119, 125, 127, 146 |
| abstract_inverted_index.</tr> | 185, 200, 214, 227, 240, 248, 259 |
| abstract_inverted_index.</ul> | 126, 147 |
| abstract_inverted_index.<div> | 160, 166, 177, 263, 281, 282 |
| abstract_inverted_index.<p>To | 150 |
| abstract_inverted_index.(Dempster's | 90 |
| abstract_inverted_index.Uncertainty | 468 |
| abstract_inverted_index.accelerated | 39 |
| abstract_inverted_index.alternative | 142 |
| abstract_inverted_index.assignments | 135 |
| abstract_inverted_index.classifier, | 153 |
| abstract_inverted_index.combination | 91 |
| abstract_inverted_index.competitive | 45 |
| abstract_inverted_index.equidistant | 194 |
| abstract_inverted_index.</div> | 175, 262 |
| abstract_inverted_index.<p>Key | 35 |
| abstract_inverted_index.Evolutionary | 68 |
| abstract_inverted_index.JIT-compiled | 95 |
| abstract_inverted_index.assignments, | 29 |
| abstract_inverted_index.final_struct | 441 |
| abstract_inverted_index.mathematical | 88 |
| abstract_inverted_index.n_agents=30, | 173 |
| abstract_inverted_index.optimization | 225 |
| abstract_inverted_index.scikit-learn | 164 |
| abstract_inverted_index.<h2>⚡ | 264 |
| abstract_inverted_index.<p>Here | 267 |
| abstract_inverted_index.<table> | 178 |
| abstract_inverted_index.<tbody> | 187 |
| abstract_inverted_index.<td>The | 205 |
| abstract_inverted_index.<thead> | 179 |
| abstract_inverted_index.Cross-Entropy | 32 |
| abstract_inverted_index.GridSearchCV, | 296 |
| abstract_inverted_index.Metaheuristic | 3 |
| abstract_inverted_index.computational | 36 |
| abstract_inverted_index.ds_classifier | 319 |
| abstract_inverted_index.feature_names | 497 |
| abstract_inverted_index.metaheuristic | 206 |
| abstract_inverted_index.</table> | 261 |
| abstract_inverted_index.</tbody> | 260 |
| abstract_inverted_index.</thead> | 186 |
| abstract_inverted_index.<div>pip | 161 |
| abstract_inverted_index.<h2>📦 | 148 |
| abstract_inverted_index.<h2>🚀 | 56 |
| abstract_inverted_index.<td>Seed | 245 |
| abstract_inverted_index.human-readable | 354 |
| abstract_inverted_index.implementation | 8 |
| abstract_inverted_index.normalization) | 93 |
| abstract_inverted_index.print(f"\n🔹 | 506 |
| abstract_inverted_index.INTERPRETATION: | 453 |
| abstract_inverted_index.loss.</p> | 34 |
| abstract_inverted_index.sklearn.metrics | 304 |
| abstract_inverted_index.zip(cls_labels, | 669 |
| abstract_inverted_index.<h2>⚙️ | 167 |
| abstract_inverted_index.<td>Number | 192 |
| abstract_inverted_index.Start</h2> | 266 |
| abstract_inverted_index.ds_classifier.py | 313 |
| abstract_inverted_index.loop.</td> | 226 |
| abstract_inverted_index.optimizer='RSA', | 171 |
| abstract_inverted_index.sklearn.datasets | 290 |
| abstract_inverted_index.sklearn.pipeline | 301 |
| abstract_inverted_index.state-of-the-art | 104 |
| abstract_inverted_index.<td>Maximum | 219 |
| abstract_inverted_index.models.</p> | 55 |
| abstract_inverted_index.n_iterations=100, | 172 |
| abstract_inverted_index.numba</div> | 165 |
| abstract_inverted_index.train_test_split, | 295 |
| abstract_inverted_index.Dataset.</p> | 280 |
| abstract_inverted_index.f"({divs[-1]:.2f}, | 594 |
| abstract_inverted_index.<strong>Numba | 41 |
| abstract_inverted_index.(Default)</p> | 112 |
| abstract_inverted_index.API:</strong> | 73 |
| abstract_inverted_index.Algorithm</p> | 118, 124 |
| abstract_inverted_index.Features</h2> | 58 |
| abstract_inverted_index.feature.</td> | 199 |
| abstract_inverted_index.final_struct[f_idx, | 637 |
| abstract_inverted_index.networks.</p> | 145 |
| abstract_inverted_index.<td>(Advanced) | 253 |
| abstract_inverted_index.<td>Population | 232 |
| abstract_inverted_index.Reference</h2> | 169 |
| abstract_inverted_index.feature_names[f_idx] | 495 |
| abstract_inverted_index.libraries:</p> | 158 |
| abstract_inverted_index.list(model.classes_) | 474 |
| abstract_inverted_index.utilities.</p> | 82 |
| abstract_inverted_index.(DST)</strong>. | 16 |
| abstract_inverted_index.dimension.</td> | 258 |
| abstract_inverted_index.reshaped.transpose(0, | 443 |
| abstract_inverted_index.sklearn.preprocessing | 298 |
| abstract_inverted_index.".join([f"{l}:{v:.2f}" | 664 |
| abstract_inverted_index.<p><code># | 308 |
| abstract_inverted_index.classification_report, | 306 |
| abstract_inverted_index.Dependencies</h2> | 149 |
| abstract_inverted_index.Optimization</h1> | 4 |
| abstract_inverted_index.Optimization.</p> | 69 |
| abstract_inverted_index.f"({divs[b_idx-1]:.2f}, | 611 |
| abstract_inverted_index.sklearn.model_selection | 293 |
| abstract_inverted_index.<p><code>def | 322 |
| abstract_inverted_index.<h1>Dempster-Shafer | 0 |
| abstract_inverted_index.<p> </p> | 159 |
| abstract_inverted_index.1)</code></p> | 445 |
| abstract_inverted_index.Algorithms</strong> | 21 |
| abstract_inverted_index.compatible</strong> | 7 |
| abstract_inverted_index.metaheuristic.</td> | 239 |
| abstract_inverted_index.metaheuristics:</p> | 105 |
| abstract_inverted_index.Optimizers:</strong> | 101 |
| abstract_inverted_index.raw_masses.reshape(n_feat, | 421 |
| abstract_inverted_index.<p><code> | 383, 446 |
| abstract_inverted_index.<p><code>import | 283 |
| abstract_inverted_index.<p><strong>High | 85 |
| abstract_inverted_index.<strong>Metaheuristic | 20 |
| abstract_inverted_index.Performance:</strong> | 86 |
| abstract_inverted_index.compilation</strong>, | 43 |
| abstract_inverted_index.reproducibility.</td> | 247 |
| abstract_inverted_index....)</code></h3> | 174 |
| abstract_inverted_index.Architecture:</strong> | 62 |
| abstract_inverted_index.print_model_masses(pipeline, | 323 |
| abstract_inverted_index.<div> </div> | 176 |
| abstract_inverted_index.<p><strong>Hybrid | 61 |
| abstract_inverted_index.<strong>Dempster-Shafer | 14 |
| abstract_inverted_index.return</code></p> | 382 |
| abstract_inverted_index.<code>'HBA'</code>, | 212 |
| abstract_inverted_index.<code>'RSA'</code>, | 211 |
| abstract_inverted_index.<p><strong>Multiple | 100 |
| abstract_inverted_index.m_vec)])</code><br>&l | 670 |
| abstract_inverted_index.<code>Pipeline</code>, | 78 |
| abstract_inverted_index.<p><strong>Scikit-learn | 72 |
| abstract_inverted_index.accuracy_score</code></p> | 307 |
| abstract_inverted_index.<code>GridSearchCV</code>, | 77 |
| abstract_inverted_index.<code>numba</code>.</p> | 97 |
| abstract_inverted_index.pd</code><br><code>from | 289 |
| abstract_inverted_index.<code>'OPA'</code>.</td> | 213 |
| abstract_inverted_index.<p><strong>HBA:</strong> | 115 |
| abstract_inverted_index.<p><strong>OPA:</strong> | 121 |
| abstract_inverted_index.<p><strong>RSA:</strong> | 108 |
| abstract_inverted_index.0:</code><br><code> | 564 |
| abstract_inverted_index.1)</code><br><code> | 427 |
| abstract_inverted_index.:]</code><br><code> | 639 |
| abstract_inverted_index.M:</code><br><code> | 584 |
| abstract_inverted_index.np</code><br><code>import | 286 |
| abstract_inverted_index."""</code><br><code> | 326, 360 |
| abstract_inverted_index.1):</code><br><code> | 542 |
| abstract_inverted_index.name</code><br><code> | 489 |
| abstract_inverted_index.term</code><br><code> | 470 |
| abstract_inverted_index.else:</code><br><code> | 601 |
| abstract_inverted_index.<td><code>5</code></td> | 191 |
| abstract_inverted_index.<td><code>M</code></td> | 189 |
| abstract_inverted_index.+inf)"</code><br><code> | 595 |
| abstract_inverted_index.DempsterShaferClassifier</code></p> | 321 |
| abstract_inverted_index.Omega)</code><br><code> | 439 |
| abstract_inverted_index.Pipeline</code><br><code>from | 303 |
| abstract_inverted_index.values</code><br><code> | 654 |
| abstract_inverted_index."="*60)</code><br><code> | 458 |
| abstract_inverted_index.<td><code>30</code></td> | 231 |
| abstract_inverted_index.display</code><br><code> | 555 |
| abstract_inverted_index.feature</code><br><code> | 524 |
| abstract_inverted_index.load_iris</code><br><code>from | 292 |
| abstract_inverted_index.model.M</code><br><code> | 400 |
| abstract_inverted_index.<code>DempsterShaferClassifier</code> | 277 |
| abstract_inverted_index.<td><code>100</code></td> | 218 |
| abstract_inverted_index.<td><code>int</code></td> | 190, 217, 230, 243, 251 |
| abstract_inverted_index.<td><code>str</code></td> | 203 |
| abstract_inverted_index.directory)</code><br><code>from | 318 |
| abstract_inverted_index.displays</code><br><code> | 349 |
| abstract_inverted_index.high-performance, <strong>Scikit-learn | 6 |
| abstract_inverted_index.interval</code><br><code> | 629 |
| abstract_inverted_index.pipeline</code><br><code> | 369 |
| abstract_inverted_index.<td><code>None</code></td> | 244, 252 |
| abstract_inverted_index.interval.</code><br><code> | 336 |
| abstract_inverted_index.<h3><code>DempsterShaferClassifier(M=5, | 170 |
| abstract_inverted_index.<td><code>'RSA'</code></td> | 204 |
| abstract_inverted_index.Intervals)</code><br><code> | 413 |
| abstract_inverted_index.dimensions</code><br><code> | 388 |
| abstract_inverted_index.<p><strong>Interpretable:</strong> | 129 |
| abstract_inverted_index.['Ω']</code><br><code> | 476 |
| abstract_inverted_index.f"F{f_idx}"</code><br><code> | 502 |
| abstract_inverted_index. </code><br><code> | 337, 374, 401, 428, 459, 477, 510, 533, 617, 644 |
| abstract_inverted_index.StandardScaler</code><br><code>from | 300 |
| abstract_inverted_index.<td><code>n_agents</code></td> | 229 |
| abstract_inverted_index.<td><strong>Type</strong></td> | 182 |
| abstract_inverted_index.StratifiedKFold</code><br><code>from | 297 |
| abstract_inverted_index.<td><code>optimizer</code></td> | 202 |
| abstract_inverted_index.range(n_feat):</code><br><code> | 482 |
| abstract_inverted_index.<td><code>custom_dim</code></td> | 250 |
| abstract_inverted_index.interpretation.</code><br><code> | 358 |
| abstract_inverted_index.{divs[0]:.2f}]"</code><br><code> | 575 |
| abstract_inverted_index.<td><strong>Default</strong></td> | 183 |
| abstract_inverted_index.{name.upper()}")</code><br><code> | 507 |
| abstract_inverted_index.<td><code>n_iterations</code></td> | 216 |
| abstract_inverted_index.<td><code>random_state</code></td> | 242 |
| abstract_inverted_index.model.is_fitted_:</code><br><code> | 378 |
| abstract_inverted_index.<td><strong>Parameter</strong></td> | 181 |
| abstract_inverted_index.len(model.classes_)</code><br><code> | 396 |
| abstract_inverted_index.model._best_masses_</code><br><code> | 417 |
| abstract_inverted_index.{divs[b_idx]:.2f}]"</code><br><code> | 612 |
| abstract_inverted_index.<td><strong>Description</strong></td> | 184 |
| abstract_inverted_index.feature_names=None):</code><br><code> | 324 |
| abstract_inverted_index.model.n_features_in_</code><br><code> | 392 |
| abstract_inverted_index.model._feature_division_points_[f_idx]</code><br><code> | 530 |
| abstract_inverted_index.pipeline.best_estimator_.named_steps['ds_clf']</code><br><code> | 373 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |