Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate Estimation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1145/3404835.3462917
Post-click conversion, as a strong signal indicating the user preference, is salutary for building recommender systems. However, accurately estimating the post-click conversion rate (CVR) is challenging due to the selection bias, i.e., the observed clicked events usually happen on users' preferred items. Currently, most existing methods utilize counterfactual learning to debias recommender systems. Among them, the doubly robust (DR) estimator has achieved competitive performance by combining the error imputation based (EIB) estimator and the inverse propensity score (IPS) estimator in a doubly robust way. However, inaccurate error imputation may result in its higher variance than the IPS estimator. Worse still, existing methods typically use simple model-agnostic methods to estimate the imputation error, which are not sufficient to approximate the dynamically changing model-correlated target (i.e., the gradient direction of the prediction model). To solve these problems, we first derive the bias and variance of the DR estimator. Based on it, a more robust doubly robust (MRDR) estimator has been proposed to further reduce its variance while retaining its double robustness. Moreover, we propose a novel double learning approach for the MRDR estimator, which can convert the error imputation into the general CVR estimation. Besides, we empirically verify that the proposed learning scheme can further eliminate the high variance problem of the imputation learning. To evaluate its effectiveness, extensive experiments are conducted on a semi-synthetic dataset and two real-world datasets. The results demonstrate the superiority of the proposed approach over the state-of-the-art methods. The code is available at https://github.com/guosyjlu/MRDR-DL.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3404835.3462917
- OA Status
- green
- Cited By
- 55
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3153682915
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3153682915Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3404835.3462917Digital Object Identifier
- Title
-
Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate EstimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-11Full publication date if available
- Authors
-
Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqi Cheng, Shuaiqiang Wang, Hechang Chen, Dawei Yin, Yi ChangList of authors in order
- Landing page
-
https://doi.org/10.1145/3404835.3462917Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2105.13623Direct OA link when available
- Concepts
-
Debiasing, Computer science, Estimator, Robustness (evolution), Imputation (statistics), Recommender system, Variance (accounting), Bias of an estimator, Minimum-variance unbiased estimator, Algorithm, Word error rate, Machine learning, Artificial intelligence, Data mining, Statistics, Missing data, Mathematics, Accounting, Chemistry, Biochemistry, Psychology, Cognitive science, Business, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
55Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 13, 2023: 20, 2022: 8Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3153682915 |
|---|---|
| doi | https://doi.org/10.1145/3404835.3462917 |
| ids.doi | https://doi.org/10.1145/3404835.3462917 |
| ids.mag | 3153682915 |
| ids.openalex | https://openalex.org/W3153682915 |
| fwci | 11.93633556 |
| type | article |
| title | Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate Estimation |
| awards[0].id | https://openalex.org/G5397433761 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | No.61976102, No.U19A2065, No.61902145 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 284 |
| biblio.first_page | 275 |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T12101 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Advanced Bandit Algorithms Research |
| topics[2].id | https://openalex.org/T11165 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9934999942779541 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Video Quality Assessment |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779458634 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8020784854888916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q24963715 |
| concepts[0].display_name | Debiasing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7864340543746948 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6932780742645264 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6892545223236084 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C58041806 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6841970682144165 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[4].display_name | Imputation (statistics) |
| concepts[5].id | https://openalex.org/C557471498 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5569432377815247 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[5].display_name | Recommender system |
| concepts[6].id | https://openalex.org/C196083921 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49015602469444275 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[6].display_name | Variance (accounting) |
| concepts[7].id | https://openalex.org/C191393472 |
| concepts[7].level | 4 |
| concepts[7].score | 0.42712506651878357 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q15222032 |
| concepts[7].display_name | Bias of an estimator |
| concepts[8].id | https://openalex.org/C165646398 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4238576292991638 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3755281 |
| concepts[8].display_name | Minimum-variance unbiased estimator |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42223381996154785 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C40969351 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4104557931423187 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[10].display_name | Word error rate |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38380977511405945 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38194894790649414 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.33324742317199707 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.25898468494415283 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C9357733 |
| concepts[15].level | 2 |
| concepts[15].score | 0.24830541014671326 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[15].display_name | Missing data |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.1660797894001007 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C121955636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[17].display_name | Accounting |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C15744967 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[20].display_name | Psychology |
| concepts[21].id | https://openalex.org/C188147891 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[21].display_name | Cognitive science |
| concepts[22].id | https://openalex.org/C144133560 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[22].display_name | Business |
| concepts[23].id | https://openalex.org/C104317684 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[23].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/debiasing |
| keywords[0].score | 0.8020784854888916 |
| keywords[0].display_name | Debiasing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7864340543746948 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6932780742645264 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6892545223236084 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/imputation |
| keywords[4].score | 0.6841970682144165 |
| keywords[4].display_name | Imputation (statistics) |
| keywords[5].id | https://openalex.org/keywords/recommender-system |
| keywords[5].score | 0.5569432377815247 |
| keywords[5].display_name | Recommender system |
| keywords[6].id | https://openalex.org/keywords/variance |
| keywords[6].score | 0.49015602469444275 |
| keywords[6].display_name | Variance (accounting) |
| keywords[7].id | https://openalex.org/keywords/bias-of-an-estimator |
| keywords[7].score | 0.42712506651878357 |
| keywords[7].display_name | Bias of an estimator |
| keywords[8].id | https://openalex.org/keywords/minimum-variance-unbiased-estimator |
| keywords[8].score | 0.4238576292991638 |
| keywords[8].display_name | Minimum-variance unbiased estimator |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.42223381996154785 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/word-error-rate |
| keywords[10].score | 0.4104557931423187 |
| keywords[10].display_name | Word error rate |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.38380977511405945 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.38194894790649414 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.33324742317199707 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.25898468494415283 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/missing-data |
| keywords[15].score | 0.24830541014671326 |
| keywords[15].display_name | Missing data |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.1660797894001007 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3404835.3462917 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval |
| locations[0].landing_page_url | https://doi.org/10.1145/3404835.3462917 |
| locations[1].id | pmh:oai:arXiv.org:2105.13623 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2105.13623 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2105.13623 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5028982929 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9304-5405 |
| authorships[0].author.display_name | Siyuan Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[0].affiliations[0].raw_affiliation_string | Jilin University, Changchun, China |
| authorships[0].institutions[0].id | https://openalex.org/I194450716 |
| authorships[0].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jilin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siyuan Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jilin University, Changchun, China |
| authorships[1].author.id | https://openalex.org/A5089307887 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6755-871X |
| authorships[1].author.display_name | Lixin Zou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[1].affiliations[0].raw_affiliation_string | Baidu Inc., Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I98301712 |
| authorships[1].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Baidu (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lixin Zou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Baidu Inc., Beijing, China |
| authorships[2].author.id | https://openalex.org/A5101677601 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6857-261X |
| authorships[2].author.display_name | Yiding Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[2].affiliations[0].raw_affiliation_string | Baidu Inc., Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I98301712 |
| authorships[2].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Baidu (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yiding Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Baidu Inc., Beijing, China |
| authorships[3].author.id | https://openalex.org/A5018923326 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wenwen Ye |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[3].affiliations[0].raw_affiliation_string | Baidu Inc., Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I98301712 |
| authorships[3].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Baidu (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenwen Ye |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Baidu Inc., Beijing, China |
| authorships[4].author.id | https://openalex.org/A5090159721 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3622-3399 |
| authorships[4].author.display_name | Suqi Cheng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[4].affiliations[0].raw_affiliation_string | Baidu Inc., Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I98301712 |
| authorships[4].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Baidu (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Suqi Cheng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Baidu Inc., Beijing, China |
| authorships[5].author.id | https://openalex.org/A5050255638 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9212-1947 |
| authorships[5].author.display_name | Shuaiqiang Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[5].affiliations[0].raw_affiliation_string | Baidu Inc., Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I98301712 |
| authorships[5].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Baidu (China) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shuaiqiang Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Baidu Inc., Beijing, China |
| authorships[6].author.id | https://openalex.org/A5108294333 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7835-9556 |
| authorships[6].author.display_name | Hechang Chen |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[6].affiliations[0].raw_affiliation_string | Jilin University, Changchun, China |
| authorships[6].institutions[0].id | https://openalex.org/I194450716 |
| authorships[6].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Jilin University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hechang Chen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Jilin University, Changchun, China |
| authorships[7].author.id | https://openalex.org/A5054482111 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8846-2001 |
| authorships[7].author.display_name | Dawei Yin |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I98301712 |
| authorships[7].affiliations[0].raw_affiliation_string | Baidu Inc., Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I98301712 |
| authorships[7].institutions[0].ror | https://ror.org/03vs3wt56 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I98301712 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Baidu (China) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Dawei Yin |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Baidu Inc., Beijing, China |
| authorships[8].author.id | https://openalex.org/A5029392006 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2697-8093 |
| authorships[8].author.display_name | Yi Chang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[8].affiliations[0].raw_affiliation_string | Jilin University, Changchun, China |
| authorships[8].institutions[0].id | https://openalex.org/I194450716 |
| authorships[8].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Jilin University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Yi Chang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Jilin University, Changchun, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2105.13623 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2349547417, https://openalex.org/W4237435333, https://openalex.org/W4248185570, https://openalex.org/W4210503132, https://openalex.org/W2999390738, https://openalex.org/W2352602506, https://openalex.org/W3092888124, https://openalex.org/W2093865141, https://openalex.org/W4239491110, https://openalex.org/W2368191880 |
| cited_by_count | 55 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 20 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2105.13623 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2105.13623 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2105.13623 |
| primary_location.id | doi:10.1145/3404835.3462917 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval |
| primary_location.landing_page_url | https://doi.org/10.1145/3404835.3462917 |
| publication_date | 2021-07-11 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3035397484, https://openalex.org/W2629213068, https://openalex.org/W2062947384, https://openalex.org/W1809653203, https://openalex.org/W2785973002, https://openalex.org/W3138731621, https://openalex.org/W2157519573, https://openalex.org/W2509235963, https://openalex.org/W2054141820, https://openalex.org/W2012905273, https://openalex.org/W3094242471, https://openalex.org/W2728796024, https://openalex.org/W2768307941, https://openalex.org/W2970613281, https://openalex.org/W2962989965, https://openalex.org/W2020631728, https://openalex.org/W2295739661, https://openalex.org/W1970210633, https://openalex.org/W3034348890, https://openalex.org/W3088432326, https://openalex.org/W2998534896, https://openalex.org/W2279176662, https://openalex.org/W1992665562, https://openalex.org/W2904108345, https://openalex.org/W2746553466, https://openalex.org/W3129482887, https://openalex.org/W2945684222, https://openalex.org/W3083370850, https://openalex.org/W3035596828, https://openalex.org/W2798283910, https://openalex.org/W3115487106, https://openalex.org/W2892888989, https://openalex.org/W3035178789, https://openalex.org/W3012576969, https://openalex.org/W2723293840, https://openalex.org/W2963842088, https://openalex.org/W2996959725, https://openalex.org/W2962785510, https://openalex.org/W4250331344, https://openalex.org/W4293876646, https://openalex.org/W4295896996, https://openalex.org/W2981596667, https://openalex.org/W3103310105, https://openalex.org/W2219888463, https://openalex.org/W2799125281, https://openalex.org/W2964297722, https://openalex.org/W2604662567, https://openalex.org/W3155919942, https://openalex.org/W2155968351, https://openalex.org/W4310228395, https://openalex.org/W146900863, https://openalex.org/W3092103025 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 3, 80, 149, 172, 221 |
| abstract_inverted_index.DR | 144 |
| abstract_inverted_index.To | 131, 212 |
| abstract_inverted_index.as | 2 |
| abstract_inverted_index.at | 245 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 79, 90 |
| abstract_inverted_index.is | 10, 24, 243 |
| abstract_inverted_index.of | 127, 142, 208, 233 |
| abstract_inverted_index.on | 38, 147, 220 |
| abstract_inverted_index.to | 27, 49, 107, 116, 159 |
| abstract_inverted_index.we | 135, 170, 193 |
| abstract_inverted_index.CVR | 190 |
| abstract_inverted_index.IPS | 96 |
| abstract_inverted_index.The | 228, 241 |
| abstract_inverted_index.and | 72, 140, 224 |
| abstract_inverted_index.are | 113, 218 |
| abstract_inverted_index.can | 182, 201 |
| abstract_inverted_index.due | 26 |
| abstract_inverted_index.for | 12, 177 |
| abstract_inverted_index.has | 60, 156 |
| abstract_inverted_index.it, | 148 |
| abstract_inverted_index.its | 91, 162, 166, 214 |
| abstract_inverted_index.may | 88 |
| abstract_inverted_index.not | 114 |
| abstract_inverted_index.the | 7, 19, 28, 32, 55, 66, 73, 95, 109, 118, 124, 128, 138, 143, 178, 184, 188, 197, 204, 209, 231, 234, 238 |
| abstract_inverted_index.two | 225 |
| abstract_inverted_index.use | 103 |
| abstract_inverted_index.(DR) | 58 |
| abstract_inverted_index.MRDR | 179 |
| abstract_inverted_index.been | 157 |
| abstract_inverted_index.bias | 139 |
| abstract_inverted_index.code | 242 |
| abstract_inverted_index.high | 205 |
| abstract_inverted_index.into | 187 |
| abstract_inverted_index.more | 150 |
| abstract_inverted_index.most | 43 |
| abstract_inverted_index.over | 237 |
| abstract_inverted_index.rate | 22 |
| abstract_inverted_index.than | 94 |
| abstract_inverted_index.that | 196 |
| abstract_inverted_index.user | 8 |
| abstract_inverted_index.way. | 83 |
| abstract_inverted_index.(CVR) | 23 |
| abstract_inverted_index.(EIB) | 70 |
| abstract_inverted_index.(IPS) | 77 |
| abstract_inverted_index.Among | 53 |
| abstract_inverted_index.Based | 146 |
| abstract_inverted_index.Worse | 98 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.bias, | 30 |
| abstract_inverted_index.error | 67, 86, 185 |
| abstract_inverted_index.first | 136 |
| abstract_inverted_index.i.e., | 31 |
| abstract_inverted_index.novel | 173 |
| abstract_inverted_index.score | 76 |
| abstract_inverted_index.solve | 132 |
| abstract_inverted_index.them, | 54 |
| abstract_inverted_index.these | 133 |
| abstract_inverted_index.which | 112, 181 |
| abstract_inverted_index.while | 164 |
| abstract_inverted_index.(MRDR) | 154 |
| abstract_inverted_index.(i.e., | 123 |
| abstract_inverted_index.debias | 50 |
| abstract_inverted_index.derive | 137 |
| abstract_inverted_index.double | 167, 174 |
| abstract_inverted_index.doubly | 56, 81, 152 |
| abstract_inverted_index.error, | 111 |
| abstract_inverted_index.events | 35 |
| abstract_inverted_index.happen | 37 |
| abstract_inverted_index.higher | 92 |
| abstract_inverted_index.items. | 41 |
| abstract_inverted_index.reduce | 161 |
| abstract_inverted_index.result | 89 |
| abstract_inverted_index.robust | 57, 82, 151, 153 |
| abstract_inverted_index.scheme | 200 |
| abstract_inverted_index.signal | 5 |
| abstract_inverted_index.simple | 104 |
| abstract_inverted_index.still, | 99 |
| abstract_inverted_index.strong | 4 |
| abstract_inverted_index.target | 122 |
| abstract_inverted_index.users' | 39 |
| abstract_inverted_index.verify | 195 |
| abstract_inverted_index.clicked | 34 |
| abstract_inverted_index.convert | 183 |
| abstract_inverted_index.dataset | 223 |
| abstract_inverted_index.further | 160, 202 |
| abstract_inverted_index.general | 189 |
| abstract_inverted_index.inverse | 74 |
| abstract_inverted_index.methods | 45, 101, 106 |
| abstract_inverted_index.model). | 130 |
| abstract_inverted_index.problem | 207 |
| abstract_inverted_index.propose | 171 |
| abstract_inverted_index.results | 229 |
| abstract_inverted_index.usually | 36 |
| abstract_inverted_index.utilize | 46 |
| abstract_inverted_index.Besides, | 192 |
| abstract_inverted_index.However, | 16, 84 |
| abstract_inverted_index.achieved | 61 |
| abstract_inverted_index.approach | 176, 236 |
| abstract_inverted_index.building | 13 |
| abstract_inverted_index.changing | 120 |
| abstract_inverted_index.estimate | 108 |
| abstract_inverted_index.evaluate | 213 |
| abstract_inverted_index.existing | 44, 100 |
| abstract_inverted_index.gradient | 125 |
| abstract_inverted_index.learning | 48, 175, 199 |
| abstract_inverted_index.methods. | 240 |
| abstract_inverted_index.observed | 33 |
| abstract_inverted_index.proposed | 158, 198, 235 |
| abstract_inverted_index.salutary | 11 |
| abstract_inverted_index.systems. | 15, 52 |
| abstract_inverted_index.variance | 93, 141, 163, 206 |
| abstract_inverted_index.Moreover, | 169 |
| abstract_inverted_index.available | 244 |
| abstract_inverted_index.combining | 65 |
| abstract_inverted_index.conducted | 219 |
| abstract_inverted_index.datasets. | 227 |
| abstract_inverted_index.direction | 126 |
| abstract_inverted_index.eliminate | 203 |
| abstract_inverted_index.estimator | 59, 71, 78, 155 |
| abstract_inverted_index.extensive | 216 |
| abstract_inverted_index.learning. | 211 |
| abstract_inverted_index.preferred | 40 |
| abstract_inverted_index.problems, | 134 |
| abstract_inverted_index.retaining | 165 |
| abstract_inverted_index.selection | 29 |
| abstract_inverted_index.typically | 102 |
| abstract_inverted_index.Currently, | 42 |
| abstract_inverted_index.Post-click | 0 |
| abstract_inverted_index.accurately | 17 |
| abstract_inverted_index.conversion | 21 |
| abstract_inverted_index.estimating | 18 |
| abstract_inverted_index.estimator, | 180 |
| abstract_inverted_index.estimator. | 97, 145 |
| abstract_inverted_index.imputation | 68, 87, 110, 186, 210 |
| abstract_inverted_index.inaccurate | 85 |
| abstract_inverted_index.indicating | 6 |
| abstract_inverted_index.post-click | 20 |
| abstract_inverted_index.prediction | 129 |
| abstract_inverted_index.propensity | 75 |
| abstract_inverted_index.real-world | 226 |
| abstract_inverted_index.sufficient | 115 |
| abstract_inverted_index.approximate | 117 |
| abstract_inverted_index.challenging | 25 |
| abstract_inverted_index.competitive | 62 |
| abstract_inverted_index.conversion, | 1 |
| abstract_inverted_index.demonstrate | 230 |
| abstract_inverted_index.dynamically | 119 |
| abstract_inverted_index.empirically | 194 |
| abstract_inverted_index.estimation. | 191 |
| abstract_inverted_index.experiments | 217 |
| abstract_inverted_index.performance | 63 |
| abstract_inverted_index.preference, | 9 |
| abstract_inverted_index.recommender | 14, 51 |
| abstract_inverted_index.robustness. | 168 |
| abstract_inverted_index.superiority | 232 |
| abstract_inverted_index.counterfactual | 47 |
| abstract_inverted_index.effectiveness, | 215 |
| abstract_inverted_index.model-agnostic | 105 |
| abstract_inverted_index.semi-synthetic | 222 |
| abstract_inverted_index.model-correlated | 121 |
| abstract_inverted_index.state-of-the-art | 239 |
| abstract_inverted_index.https://github.com/guosyjlu/MRDR-DL. | 246 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.98419366 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |