Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6265131/v1
AI computation in healthcare faces significant challenges when clinical datasets are limited and heterogeneous. Integrating datasets from multiple sources and different equipments is critical for effective AI computation but is complicated by their diversity, complexity, and lack of representativeness, so we often need to join multiple datasets for analysis. The currently used method is fusion after normalization. But when using this method, it can introduce redundant information, decreasing the signal-to-noise ratio and reducing classification accuracy. To tackle this issue, we propose a feature-based fusion algorithm utilizing Kernel Density Estimation (KDE) and Kullback-Leibler (KL) divergence. Our approach involves initially preprocessing and continuous estimation on the extracted features, followed by employing the gradient descent method to identify the optimal linear parameters that minimize the KL divergence between the feature distributions. Using our in-house datasets consisting of ECG signals collected from 2000 healthy and 2000 diseased individuals by different equipments and verifying our method by using the publicly available PTB-XL dataset which contains 21,837 ECG recordings from 18,885 patients. We employ a Light Gradient Boosting Machine (LGBM) model to do the binary classification. The results demonstrate that the proposed fusion method significantly enhances feature-based classification accuracy for abnormal ECG cases in the merged datasets, compared to the normalization method. This data fusion strategy provides a new approach to process heterogeneous datasets for the optimal AI computation results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6265131/v1
- https://www.researchsquare.com/article/rs-6265131/latest.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408989055
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408989055Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6265131/v1Digital Object Identifier
- Title
-
Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data FusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-31Full publication date if available
- Authors
-
Baozhuo Su, Qingli Dou, Liu Kang, Zhengxian Qu, Jianjun Deng, Ting Tan, Yanan GuList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6265131/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6265131/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6265131/latest.pdfDirect OA link when available
- Concepts
-
Divergence (linguistics), Fusion, Artificial intelligence, Sensor fusion, Computer science, Data mining, Pattern recognition (psychology), Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408989055 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6265131/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6265131/v1 |
| ids.openalex | https://openalex.org/W4408989055 |
| fwci | 0.0 |
| type | preprint |
| title | Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8611999750137329 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C207390915 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5262566804885864 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[0].display_name | Divergence (linguistics) |
| concepts[1].id | https://openalex.org/C158525013 |
| concepts[1].level | 2 |
| concepts[1].score | 0.45315974950790405 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[1].display_name | Fusion |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.443888783454895 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C33954974 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43384677171707153 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[3].display_name | Sensor fusion |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43003562092781067 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3496878147125244 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.32466182112693787 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| concepts[8].id | https://openalex.org/C41895202 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[8].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/divergence |
| keywords[0].score | 0.5262566804885864 |
| keywords[0].display_name | Divergence (linguistics) |
| keywords[1].id | https://openalex.org/keywords/fusion |
| keywords[1].score | 0.45315974950790405 |
| keywords[1].display_name | Fusion |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.443888783454895 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/sensor-fusion |
| keywords[3].score | 0.43384677171707153 |
| keywords[3].display_name | Sensor fusion |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.43003562092781067 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3496878147125244 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.32466182112693787 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6265131/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6265131/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6265131/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5071072435 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6077-6173 |
| authorships[0].author.display_name | Baozhuo Su |
| authorships[0].affiliations[0].raw_affiliation_string | Aerie Intelligent Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Baozhuo Su |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Aerie Intelligent Technology |
| authorships[1].author.id | https://openalex.org/A5026711341 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qingli Dou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210134759 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen Bao'an District People's Hospital |
| authorships[1].institutions[0].id | https://openalex.org/I4210134759 |
| authorships[1].institutions[0].ror | https://ror.org/04dkfar71 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210134759 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Bao'an District People's Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qingli Dou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen Bao'an District People's Hospital |
| authorships[2].author.id | https://openalex.org/A5024107573 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-1307-330X |
| authorships[2].author.display_name | Liu Kang |
| authorships[2].affiliations[0].raw_affiliation_string | Aerie Intelligent Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kang Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Aerie Intelligent Technology |
| authorships[3].author.id | https://openalex.org/A5112522168 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-0592-8741 |
| authorships[3].author.display_name | Zhengxian Qu |
| authorships[3].affiliations[0].raw_affiliation_string | Aerie Intelligent Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhengxian Qu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Aerie Intelligent Technology |
| authorships[4].author.id | https://openalex.org/A5085720122 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3057-6997 |
| authorships[4].author.display_name | Jianjun Deng |
| authorships[4].affiliations[0].raw_affiliation_string | Aerie Intelligent Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jerry Deng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Aerie Intelligent Technology |
| authorships[5].author.id | https://openalex.org/A5007519353 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7533-4553 |
| authorships[5].author.display_name | Ting Tan |
| authorships[5].affiliations[0].raw_affiliation_string | Aerie Intelligent Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ting Tan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Aerie Intelligent Technology |
| authorships[6].author.id | https://openalex.org/A5112124425 |
| authorships[6].author.orcid | https://orcid.org/0009-0000-7908-585X |
| authorships[6].author.display_name | Yanan Gu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210134759 |
| authorships[6].affiliations[0].raw_affiliation_string | Shenzhen Bao'an District People's Hospital |
| authorships[6].institutions[0].id | https://openalex.org/I4210134759 |
| authorships[6].institutions[0].ror | https://ror.org/04dkfar71 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210134759 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Shenzhen Bao'an District People's Hospital |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yanan Gu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Shenzhen Bao'an District People's Hospital |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6265131/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8611999750137329 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W4403822433, https://openalex.org/W3208095355, https://openalex.org/W2177370417, https://openalex.org/W2052507016, https://openalex.org/W2180461068, https://openalex.org/W2051816080, https://openalex.org/W2132659060, https://openalex.org/W2031992971, https://openalex.org/W3214791684, https://openalex.org/W2152662039 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6265131/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6265131/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6265131/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6265131/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6265131/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6265131/v1 |
| publication_date | 2025-03-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 82, 169, 212 |
| abstract_inverted_index.AI | 1, 27, 222 |
| abstract_inverted_index.KL | 123 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.We | 167 |
| abstract_inverted_index.by | 32, 108, 145, 152 |
| abstract_inverted_index.do | 177 |
| abstract_inverted_index.in | 3, 198 |
| abstract_inverted_index.is | 23, 30, 54 |
| abstract_inverted_index.it | 63 |
| abstract_inverted_index.of | 38, 134 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.so | 40 |
| abstract_inverted_index.to | 44, 114, 176, 203, 215 |
| abstract_inverted_index.we | 41, 80 |
| abstract_inverted_index.But | 58 |
| abstract_inverted_index.ECG | 135, 162, 196 |
| abstract_inverted_index.Our | 95 |
| abstract_inverted_index.The | 50, 181 |
| abstract_inverted_index.and | 13, 20, 36, 72, 91, 100, 141, 148 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.but | 29 |
| abstract_inverted_index.can | 64 |
| abstract_inverted_index.for | 25, 48, 194, 219 |
| abstract_inverted_index.new | 213 |
| abstract_inverted_index.our | 130, 150 |
| abstract_inverted_index.the | 69, 104, 110, 116, 122, 126, 154, 178, 185, 199, 204, 220 |
| abstract_inverted_index.(KL) | 93 |
| abstract_inverted_index.2000 | 139, 142 |
| abstract_inverted_index.This | 207 |
| abstract_inverted_index.data | 208 |
| abstract_inverted_index.from | 17, 138, 164 |
| abstract_inverted_index.join | 45 |
| abstract_inverted_index.lack | 37 |
| abstract_inverted_index.need | 43 |
| abstract_inverted_index.that | 120, 184 |
| abstract_inverted_index.this | 61, 78 |
| abstract_inverted_index.used | 52 |
| abstract_inverted_index.when | 8, 59 |
| abstract_inverted_index.(KDE) | 90 |
| abstract_inverted_index.Light | 170 |
| abstract_inverted_index.Using | 129 |
| abstract_inverted_index.after | 56 |
| abstract_inverted_index.cases | 197 |
| abstract_inverted_index.faces | 5 |
| abstract_inverted_index.model | 175 |
| abstract_inverted_index.often | 42 |
| abstract_inverted_index.ratio | 71 |
| abstract_inverted_index.their | 33 |
| abstract_inverted_index.using | 60, 153 |
| abstract_inverted_index.which | 159 |
| abstract_inverted_index.(LGBM) | 174 |
| abstract_inverted_index.18,885 | 165 |
| abstract_inverted_index.21,837 | 161 |
| abstract_inverted_index.Kernel | 87 |
| abstract_inverted_index.PTB-XL | 157 |
| abstract_inverted_index.binary | 179 |
| abstract_inverted_index.employ | 168 |
| abstract_inverted_index.fusion | 55, 84, 187, 209 |
| abstract_inverted_index.issue, | 79 |
| abstract_inverted_index.linear | 118 |
| abstract_inverted_index.merged | 200 |
| abstract_inverted_index.method | 53, 113, 151, 188 |
| abstract_inverted_index.tackle | 77 |
| abstract_inverted_index.Density | 88 |
| abstract_inverted_index.Machine | 173 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.dataset | 158 |
| abstract_inverted_index.descent | 112 |
| abstract_inverted_index.feature | 127 |
| abstract_inverted_index.healthy | 140 |
| abstract_inverted_index.limited | 12 |
| abstract_inverted_index.method, | 62 |
| abstract_inverted_index.method. | 206 |
| abstract_inverted_index.optimal | 117, 221 |
| abstract_inverted_index.process | 216 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.results | 182 |
| abstract_inverted_index.signals | 136 |
| abstract_inverted_index.sources | 19 |
| abstract_inverted_index.Boosting | 172 |
| abstract_inverted_index.Gradient | 171 |
| abstract_inverted_index.abnormal | 195 |
| abstract_inverted_index.accuracy | 193 |
| abstract_inverted_index.approach | 96, 214 |
| abstract_inverted_index.clinical | 9 |
| abstract_inverted_index.compared | 202 |
| abstract_inverted_index.contains | 160 |
| abstract_inverted_index.critical | 24 |
| abstract_inverted_index.datasets | 10, 16, 47, 132, 218 |
| abstract_inverted_index.diseased | 143 |
| abstract_inverted_index.enhances | 190 |
| abstract_inverted_index.followed | 107 |
| abstract_inverted_index.gradient | 111 |
| abstract_inverted_index.identify | 115 |
| abstract_inverted_index.in-house | 131 |
| abstract_inverted_index.involves | 97 |
| abstract_inverted_index.minimize | 121 |
| abstract_inverted_index.multiple | 18, 46 |
| abstract_inverted_index.proposed | 186 |
| abstract_inverted_index.provides | 211 |
| abstract_inverted_index.publicly | 155 |
| abstract_inverted_index.reducing | 73 |
| abstract_inverted_index.results. | 224 |
| abstract_inverted_index.strategy | 210 |
| abstract_inverted_index.accuracy. | 75 |
| abstract_inverted_index.algorithm | 85 |
| abstract_inverted_index.analysis. | 49 |
| abstract_inverted_index.available | 156 |
| abstract_inverted_index.collected | 137 |
| abstract_inverted_index.currently | 51 |
| abstract_inverted_index.datasets, | 201 |
| abstract_inverted_index.different | 21, 146 |
| abstract_inverted_index.effective | 26 |
| abstract_inverted_index.employing | 109 |
| abstract_inverted_index.extracted | 105 |
| abstract_inverted_index.features, | 106 |
| abstract_inverted_index.initially | 98 |
| abstract_inverted_index.introduce | 65 |
| abstract_inverted_index.patients. | 166 |
| abstract_inverted_index.redundant | 66 |
| abstract_inverted_index.utilizing | 86 |
| abstract_inverted_index.verifying | 149 |
| abstract_inverted_index.Estimation | 89 |
| abstract_inverted_index.challenges | 7 |
| abstract_inverted_index.consisting | 133 |
| abstract_inverted_index.continuous | 101 |
| abstract_inverted_index.decreasing | 68 |
| abstract_inverted_index.divergence | 124 |
| abstract_inverted_index.diversity, | 34 |
| abstract_inverted_index.equipments | 22, 147 |
| abstract_inverted_index.estimation | 102 |
| abstract_inverted_index.healthcare | 4 |
| abstract_inverted_index.parameters | 119 |
| abstract_inverted_index.recordings | 163 |
| abstract_inverted_index.Integrating | 15 |
| abstract_inverted_index.complexity, | 35 |
| abstract_inverted_index.complicated | 31 |
| abstract_inverted_index.computation | 2, 28, 223 |
| abstract_inverted_index.demonstrate | 183 |
| abstract_inverted_index.divergence. | 94 |
| abstract_inverted_index.individuals | 144 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.information, | 67 |
| abstract_inverted_index.feature-based | 83, 191 |
| abstract_inverted_index.heterogeneous | 217 |
| abstract_inverted_index.normalization | 205 |
| abstract_inverted_index.preprocessing | 99 |
| abstract_inverted_index.significantly | 189 |
| abstract_inverted_index.classification | 74, 192 |
| abstract_inverted_index.distributions. | 128 |
| abstract_inverted_index.heterogeneous. | 14 |
| abstract_inverted_index.normalization. | 57 |
| abstract_inverted_index.classification. | 180 |
| abstract_inverted_index.signal-to-noise | 70 |
| abstract_inverted_index.Kullback-Leibler | 92 |
| abstract_inverted_index.representativeness, | 39 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.16512624 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |