Enhanced Gradient for Differentiable Architecture Search Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2103.12529
In recent years, neural architecture search (NAS) methods have been proposed for the automatic generation of task-oriented network architecture in image classification. However, the architectures obtained by existing NAS approaches are optimized only for classification performance and do not adapt to devices with limited computational resources. To address this challenge, we propose a neural network architecture search algorithm aiming to simultaneously improve network performance (e.g., classification accuracy) and reduce network complexity. The proposed framework automatically builds the network architecture at two stages: block-level search and network-level search. At the stage of block-level search, a relaxation method based on the gradient is proposed, using an enhanced gradient to design high-performance and low-complexity blocks. At the stage of network-level search, we apply an evolutionary multi-objective algorithm to complete the automatic design from blocks to the target network. The experiment results demonstrate that our method outperforms all evaluated hand-crafted networks in image classification, with an error rate of on CIFAR10 and an error rate of on CIFAR100, both at network parameter size less than one megabit. Moreover, compared with other neural architecture search methods, our method offers a tremendous reduction in designed network architecture parameters.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2103.12529
- https://arxiv.org/pdf/2103.12529
- OA Status
- green
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3136246742
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3136246742Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2103.12529Digital Object Identifier
- Title
-
Enhanced Gradient for Differentiable Architecture SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-23Full publication date if available
- Authors
-
Haichao Zhang, Kuangrong Hao, Lei Gao, Xue‐song Tang, Bing WeiList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.12529Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2103.12529Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.12529Direct OA link when available
- Concepts
-
Computer science, Network architecture, Block (permutation group theory), Artificial intelligence, Architecture, Artificial neural network, Contextual image classification, Search algorithm, Reduction (mathematics), Word error rate, Data mining, Pattern recognition (psychology), Machine learning, Image (mathematics), Algorithm, Mathematics, Computer network, Art, Visual arts, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3136246742 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2103.12529 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.12529 |
| ids.mag | 3136246742 |
| ids.openalex | https://openalex.org/W3136246742 |
| fwci | |
| type | preprint |
| title | Enhanced Gradient for Differentiable Architecture Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7563271522521973 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C193415008 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6128134727478027 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[1].display_name | Network architecture |
| concepts[2].id | https://openalex.org/C2777210771 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6060228943824768 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[2].display_name | Block (permutation group theory) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5204320549964905 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C123657996 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5167683362960815 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[4].display_name | Architecture |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5022263526916504 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C75294576 |
| concepts[6].level | 3 |
| concepts[6].score | 0.46838194131851196 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[6].display_name | Contextual image classification |
| concepts[7].id | https://openalex.org/C125583679 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43016675114631653 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q755673 |
| concepts[7].display_name | Search algorithm |
| concepts[8].id | https://openalex.org/C111335779 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4280270040035248 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[8].display_name | Reduction (mathematics) |
| concepts[9].id | https://openalex.org/C40969351 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4209173321723938 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[9].display_name | Word error rate |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.410390704870224 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3841073215007782 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3652269244194031 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3635268807411194 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2637079060077667 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12379291653633118 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08805245161056519 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| concepts[17].id | https://openalex.org/C142362112 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[17].display_name | Art |
| concepts[18].id | https://openalex.org/C153349607 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[18].display_name | Visual arts |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7563271522521973 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/network-architecture |
| keywords[1].score | 0.6128134727478027 |
| keywords[1].display_name | Network architecture |
| keywords[2].id | https://openalex.org/keywords/block |
| keywords[2].score | 0.6060228943824768 |
| keywords[2].display_name | Block (permutation group theory) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5204320549964905 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/architecture |
| keywords[4].score | 0.5167683362960815 |
| keywords[4].display_name | Architecture |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5022263526916504 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[6].score | 0.46838194131851196 |
| keywords[6].display_name | Contextual image classification |
| keywords[7].id | https://openalex.org/keywords/search-algorithm |
| keywords[7].score | 0.43016675114631653 |
| keywords[7].display_name | Search algorithm |
| keywords[8].id | https://openalex.org/keywords/reduction |
| keywords[8].score | 0.4280270040035248 |
| keywords[8].display_name | Reduction (mathematics) |
| keywords[9].id | https://openalex.org/keywords/word-error-rate |
| keywords[9].score | 0.4209173321723938 |
| keywords[9].display_name | Word error rate |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.410390704870224 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3841073215007782 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3652269244194031 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.3635268807411194 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.2637079060077667 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.12379291653633118 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/computer-network |
| keywords[16].score | 0.08805245161056519 |
| keywords[16].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2103.12529 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2103.12529 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2103.12529 |
| locations[1].id | doi:10.48550/arxiv.2103.12529 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2103.12529 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101758340 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4168-3640 |
| authorships[0].author.display_name | Haichao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haichao Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001762132 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9672-6161 |
| authorships[1].author.display_name | Kuangrong Hao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kuangrong Hao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002631807 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4272-9417 |
| authorships[2].author.display_name | Lei Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lei Gao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5048492871 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7594-2241 |
| authorships[3].author.display_name | Xue‐song Tang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xue-Song Tang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5064572247 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2298-1474 |
| authorships[4].author.display_name | Bing Wei |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bing Wei |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.12529 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Gradient for Differentiable Architecture Search |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2372403409, https://openalex.org/W4242726756, https://openalex.org/W1979328687, https://openalex.org/W144832045, https://openalex.org/W2132049714, https://openalex.org/W2034641747, https://openalex.org/W2003949892, https://openalex.org/W2884713252, https://openalex.org/W4205201129, https://openalex.org/W2361605727 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.12529 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.12529 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.12529 |
| primary_location.id | pmh:oai:arXiv.org:2103.12529 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2103.12529 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2103.12529 |
| publication_date | 2021-03-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2194775991, https://openalex.org/W3092580847, https://openalex.org/W2963821229, https://openalex.org/W3001340915, https://openalex.org/W1653273292, https://openalex.org/W2097117768, https://openalex.org/W2963446712, https://openalex.org/W2806920391, https://openalex.org/W2963125010, https://openalex.org/W2899243211, https://openalex.org/W2965658867, https://openalex.org/W2964212578, https://openalex.org/W3080443832, https://openalex.org/W2954070046, https://openalex.org/W2111935653, https://openalex.org/W2126105956, https://openalex.org/W2963778169, https://openalex.org/W2964081807, https://openalex.org/W2618530766, https://openalex.org/W2145339207, https://openalex.org/W2977955221, https://openalex.org/W2606006859, https://openalex.org/W2808938483, https://openalex.org/W2124659975, https://openalex.org/W2796265726, https://openalex.org/W2553303224, https://openalex.org/W2963163009, https://openalex.org/W3034552520, https://openalex.org/W2963918968, https://openalex.org/W2782417188, https://openalex.org/W3082366738, https://openalex.org/W2981748264, https://openalex.org/W2132194070, https://openalex.org/W2117539524, https://openalex.org/W2810075754, https://openalex.org/W1607307504, https://openalex.org/W3002750555, https://openalex.org/W2925665976, https://openalex.org/W2119814172, https://openalex.org/W2266822037, https://openalex.org/W2112299196, https://openalex.org/W2953308748, https://openalex.org/W1659842140, https://openalex.org/W2916118939, https://openalex.org/W3012028708 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 52, 93, 184 |
| abstract_inverted_index.At | 87, 112 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.an | 103, 120, 151, 158 |
| abstract_inverted_index.at | 79, 165 |
| abstract_inverted_index.by | 26 |
| abstract_inverted_index.do | 37 |
| abstract_inverted_index.in | 19, 147, 187 |
| abstract_inverted_index.is | 100 |
| abstract_inverted_index.of | 15, 90, 115, 154, 161 |
| abstract_inverted_index.on | 97, 155, 162 |
| abstract_inverted_index.to | 40, 59, 106, 124, 131 |
| abstract_inverted_index.we | 50, 118 |
| abstract_inverted_index.NAS | 28 |
| abstract_inverted_index.The | 71, 135 |
| abstract_inverted_index.all | 143 |
| abstract_inverted_index.and | 36, 67, 84, 109, 157 |
| abstract_inverted_index.are | 30 |
| abstract_inverted_index.for | 11, 33 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.one | 171 |
| abstract_inverted_index.our | 140, 181 |
| abstract_inverted_index.the | 12, 23, 76, 88, 98, 113, 126, 132 |
| abstract_inverted_index.two | 80 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.both | 164 |
| abstract_inverted_index.from | 129 |
| abstract_inverted_index.have | 8 |
| abstract_inverted_index.less | 169 |
| abstract_inverted_index.only | 32 |
| abstract_inverted_index.rate | 153, 160 |
| abstract_inverted_index.size | 168 |
| abstract_inverted_index.than | 170 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.with | 42, 150, 175 |
| abstract_inverted_index.(NAS) | 6 |
| abstract_inverted_index.adapt | 39 |
| abstract_inverted_index.apply | 119 |
| abstract_inverted_index.based | 96 |
| abstract_inverted_index.error | 152, 159 |
| abstract_inverted_index.image | 20, 148 |
| abstract_inverted_index.other | 176 |
| abstract_inverted_index.stage | 89, 114 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.(e.g., | 64 |
| abstract_inverted_index.aiming | 58 |
| abstract_inverted_index.blocks | 130 |
| abstract_inverted_index.builds | 75 |
| abstract_inverted_index.design | 107, 128 |
| abstract_inverted_index.method | 95, 141, 182 |
| abstract_inverted_index.neural | 3, 53, 177 |
| abstract_inverted_index.offers | 183 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.reduce | 68 |
| abstract_inverted_index.search | 5, 56, 83, 179 |
| abstract_inverted_index.target | 133 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.CIFAR10 | 156 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.blocks. | 111 |
| abstract_inverted_index.devices | 41 |
| abstract_inverted_index.improve | 61 |
| abstract_inverted_index.limited | 43 |
| abstract_inverted_index.methods | 7 |
| abstract_inverted_index.network | 17, 54, 62, 69, 77, 166, 189 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.search, | 92, 117 |
| abstract_inverted_index.search. | 86 |
| abstract_inverted_index.stages: | 81 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.complete | 125 |
| abstract_inverted_index.designed | 188 |
| abstract_inverted_index.enhanced | 104 |
| abstract_inverted_index.existing | 27 |
| abstract_inverted_index.gradient | 99, 105 |
| abstract_inverted_index.megabit. | 172 |
| abstract_inverted_index.methods, | 180 |
| abstract_inverted_index.network. | 134 |
| abstract_inverted_index.networks | 146 |
| abstract_inverted_index.obtained | 25 |
| abstract_inverted_index.proposed | 10, 72 |
| abstract_inverted_index.CIFAR100, | 163 |
| abstract_inverted_index.Moreover, | 173 |
| abstract_inverted_index.accuracy) | 66 |
| abstract_inverted_index.algorithm | 57, 123 |
| abstract_inverted_index.automatic | 13, 127 |
| abstract_inverted_index.evaluated | 144 |
| abstract_inverted_index.framework | 73 |
| abstract_inverted_index.optimized | 31 |
| abstract_inverted_index.parameter | 167 |
| abstract_inverted_index.proposed, | 101 |
| abstract_inverted_index.reduction | 186 |
| abstract_inverted_index.approaches | 29 |
| abstract_inverted_index.challenge, | 49 |
| abstract_inverted_index.experiment | 136 |
| abstract_inverted_index.generation | 14 |
| abstract_inverted_index.relaxation | 94 |
| abstract_inverted_index.resources. | 45 |
| abstract_inverted_index.tremendous | 185 |
| abstract_inverted_index.block-level | 82, 91 |
| abstract_inverted_index.complexity. | 70 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.outperforms | 142 |
| abstract_inverted_index.parameters. | 191 |
| abstract_inverted_index.performance | 35, 63 |
| abstract_inverted_index.architecture | 4, 18, 55, 78, 178, 190 |
| abstract_inverted_index.evolutionary | 121 |
| abstract_inverted_index.hand-crafted | 145 |
| abstract_inverted_index.architectures | 24 |
| abstract_inverted_index.automatically | 74 |
| abstract_inverted_index.computational | 44 |
| abstract_inverted_index.network-level | 85, 116 |
| abstract_inverted_index.task-oriented | 16 |
| abstract_inverted_index.classification | 34, 65 |
| abstract_inverted_index.low-complexity | 110 |
| abstract_inverted_index.simultaneously | 60 |
| abstract_inverted_index.classification, | 149 |
| abstract_inverted_index.classification. | 21 |
| abstract_inverted_index.multi-objective | 122 |
| abstract_inverted_index.high-performance | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |