Enhanced Image Recognition Using Gaussian Boson Sampling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.19707
Gaussian boson sampling (GBS) has emerged as a promising quantum computing paradigm, demonstrating its potential in various applications. However, most existing works focus on theoretical aspects or simple tasks, with limited exploration of its capabilities in solving real-world practical problems. In this work, we propose a novel GBS-based image recognition scheme inspired by extreme learning machine (ELM) to enhance the performance of perceptron and implement it using our latest GBS device, Jiuzhang. Our approach utilizes an 8176-mode temporal-spatial hybrid encoding photonic processor, achieving approximately 2200 average photon clicks in the quantum computational advantage regime. We apply this scheme to classify images from the MNIST and Fashion-MNIST datasets, achieving a testing accuracy of 95.86% on MNIST and 85.95% on Fashion-MNIST. These results surpass those of classical method SVC with linear kernel and previous physical ELM-based experiments. Additionally, we explore the influence of three hyperparameters and the efficiency of GBS in our experiments. This work not only demonstrates the potential of GBS in real-world machine learning applications but also aims to inspire further advancements in powerful machine learning schemes utilizing GBS technology.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.19707
- https://arxiv.org/pdf/2506.19707
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414684502
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414684502Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.19707Digital Object Identifier
- Title
-
Enhanced Image Recognition Using Gaussian Boson SamplingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-24Full publication date if available
- Authors
-
Si-Qiu Gong, Ming-Cheng Chen, Hua-Liang Liu, Hao Su, Yi-Chao Gu, Haoyang Tang, Meng-Hao Jia, Yu‐Hao Deng, Wei Qian, Hui Wang, Han-Sen Zhong, Xiao Jiang, Li Li, Nai-Le Liu, Chao‐Yang Lu, Jian-Wei PanList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.19707Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.19707Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.19707Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414684502 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.19707 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.19707 |
| ids.openalex | https://openalex.org/W4414684502 |
| fwci | |
| type | preprint |
| title | Enhanced Image Recognition Using Gaussian Boson Sampling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11324 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.6972000002861023 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.19707 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.19707 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.19707 |
| locations[1].id | doi:10.48550/arxiv.2506.19707 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.19707 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5074767359 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5447-2228 |
| authorships[0].author.display_name | Si-Qiu Gong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gong, Si-Qiu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028512714 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5158-5091 |
| authorships[1].author.display_name | Ming-Cheng Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Ming-Cheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068376400 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hua-Liang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Hua-Liang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5004874905 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hao Su |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Su, Hao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007854744 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yi-Chao Gu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gu, Yi-Chao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5012468263 |
| authorships[5].author.orcid | https://orcid.org/0009-0001-6237-8477 |
| authorships[5].author.display_name | Haoyang Tang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tang, Hao-Yang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5006069039 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2261-720X |
| authorships[6].author.display_name | Meng-Hao Jia |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jia, Meng-Hao |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5029437080 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8828-3820 |
| authorships[7].author.display_name | Yu‐Hao Deng |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Deng, Yu-Hao |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100618190 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6717-6110 |
| authorships[8].author.display_name | Wei Qian |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wei, Qian |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100460965 |
| authorships[9].author.orcid | https://orcid.org/0009-0001-8773-6066 |
| authorships[9].author.display_name | Hui Wang |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Wang, Hui |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5102625679 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Han-Sen Zhong |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Zhong, Han-Sen |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5100640343 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7335-4238 |
| authorships[11].author.display_name | Xiao Jiang |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Jiang, Xiao |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5100361033 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-8122-8733 |
| authorships[12].author.display_name | Li Li |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Li, Li |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5090252780 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-0986-3019 |
| authorships[13].author.display_name | Nai-Le Liu |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Liu, Nai-Le |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5032099658 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-8227-9177 |
| authorships[14].author.display_name | Chao‐Yang Lu |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Lu, Chao-Yang |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5042449260 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-6100-5142 |
| authorships[15].author.display_name | Jian-Wei Pan |
| authorships[15].author_position | last |
| authorships[15].raw_author_name | Pan, Jian-Wei |
| authorships[15].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.19707 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Image Recognition Using Gaussian Boson Sampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11324 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.6972000002861023 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.19707 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.19707 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.19707 |
| primary_location.id | pmh:oai:arXiv.org:2506.19707 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.19707 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.19707 |
| publication_date | 2025-06-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 45, 108 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.We | 94 |
| abstract_inverted_index.an | 75 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.by | 52 |
| abstract_inverted_index.in | 15, 35, 88, 148, 160, 172 |
| abstract_inverted_index.it | 65 |
| abstract_inverted_index.of | 32, 61, 111, 123, 140, 146, 158 |
| abstract_inverted_index.on | 23, 113, 117 |
| abstract_inverted_index.or | 26 |
| abstract_inverted_index.to | 57, 98, 168 |
| abstract_inverted_index.we | 43, 136 |
| abstract_inverted_index.GBS | 69, 147, 159, 178 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.SVC | 126 |
| abstract_inverted_index.and | 63, 104, 115, 130, 143 |
| abstract_inverted_index.but | 165 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.its | 13, 33 |
| abstract_inverted_index.not | 153 |
| abstract_inverted_index.our | 67, 149 |
| abstract_inverted_index.the | 59, 89, 102, 138, 144, 156 |
| abstract_inverted_index.2200 | 84 |
| abstract_inverted_index.This | 151 |
| abstract_inverted_index.aims | 167 |
| abstract_inverted_index.also | 166 |
| abstract_inverted_index.from | 101 |
| abstract_inverted_index.most | 19 |
| abstract_inverted_index.only | 154 |
| abstract_inverted_index.this | 41, 96 |
| abstract_inverted_index.with | 29, 127 |
| abstract_inverted_index.work | 152 |
| abstract_inverted_index.(ELM) | 56 |
| abstract_inverted_index.(GBS) | 3 |
| abstract_inverted_index.MNIST | 103, 114 |
| abstract_inverted_index.These | 119 |
| abstract_inverted_index.apply | 95 |
| abstract_inverted_index.boson | 1 |
| abstract_inverted_index.focus | 22 |
| abstract_inverted_index.image | 48 |
| abstract_inverted_index.novel | 46 |
| abstract_inverted_index.those | 122 |
| abstract_inverted_index.three | 141 |
| abstract_inverted_index.using | 66 |
| abstract_inverted_index.work, | 42 |
| abstract_inverted_index.works | 21 |
| abstract_inverted_index.85.95% | 116 |
| abstract_inverted_index.95.86% | 112 |
| abstract_inverted_index.clicks | 87 |
| abstract_inverted_index.hybrid | 78 |
| abstract_inverted_index.images | 100 |
| abstract_inverted_index.kernel | 129 |
| abstract_inverted_index.latest | 68 |
| abstract_inverted_index.linear | 128 |
| abstract_inverted_index.method | 125 |
| abstract_inverted_index.photon | 86 |
| abstract_inverted_index.scheme | 50, 97 |
| abstract_inverted_index.simple | 27 |
| abstract_inverted_index.tasks, | 28 |
| abstract_inverted_index.aspects | 25 |
| abstract_inverted_index.average | 85 |
| abstract_inverted_index.device, | 70 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.enhance | 58 |
| abstract_inverted_index.explore | 137 |
| abstract_inverted_index.extreme | 53 |
| abstract_inverted_index.further | 170 |
| abstract_inverted_index.inspire | 169 |
| abstract_inverted_index.limited | 30 |
| abstract_inverted_index.machine | 55, 162, 174 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.quantum | 9, 90 |
| abstract_inverted_index.regime. | 93 |
| abstract_inverted_index.results | 120 |
| abstract_inverted_index.schemes | 176 |
| abstract_inverted_index.solving | 36 |
| abstract_inverted_index.surpass | 121 |
| abstract_inverted_index.testing | 109 |
| abstract_inverted_index.various | 16 |
| abstract_inverted_index.Gaussian | 0 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.accuracy | 110 |
| abstract_inverted_index.approach | 73 |
| abstract_inverted_index.classify | 99 |
| abstract_inverted_index.encoding | 79 |
| abstract_inverted_index.existing | 20 |
| abstract_inverted_index.inspired | 51 |
| abstract_inverted_index.learning | 54, 163, 175 |
| abstract_inverted_index.photonic | 80 |
| abstract_inverted_index.physical | 132 |
| abstract_inverted_index.powerful | 173 |
| abstract_inverted_index.previous | 131 |
| abstract_inverted_index.sampling | 2 |
| abstract_inverted_index.utilizes | 74 |
| abstract_inverted_index.8176-mode | 76 |
| abstract_inverted_index.ELM-based | 133 |
| abstract_inverted_index.GBS-based | 47 |
| abstract_inverted_index.Jiuzhang. | 71 |
| abstract_inverted_index.achieving | 82, 107 |
| abstract_inverted_index.advantage | 92 |
| abstract_inverted_index.classical | 124 |
| abstract_inverted_index.computing | 10 |
| abstract_inverted_index.datasets, | 106 |
| abstract_inverted_index.implement | 64 |
| abstract_inverted_index.influence | 139 |
| abstract_inverted_index.paradigm, | 11 |
| abstract_inverted_index.potential | 14, 157 |
| abstract_inverted_index.practical | 38 |
| abstract_inverted_index.problems. | 39 |
| abstract_inverted_index.promising | 8 |
| abstract_inverted_index.utilizing | 177 |
| abstract_inverted_index.efficiency | 145 |
| abstract_inverted_index.perceptron | 62 |
| abstract_inverted_index.processor, | 81 |
| abstract_inverted_index.real-world | 37, 161 |
| abstract_inverted_index.exploration | 31 |
| abstract_inverted_index.performance | 60 |
| abstract_inverted_index.recognition | 49 |
| abstract_inverted_index.technology. | 179 |
| abstract_inverted_index.theoretical | 24 |
| abstract_inverted_index.advancements | 171 |
| abstract_inverted_index.applications | 164 |
| abstract_inverted_index.capabilities | 34 |
| abstract_inverted_index.demonstrates | 155 |
| abstract_inverted_index.experiments. | 134, 150 |
| abstract_inverted_index.Additionally, | 135 |
| abstract_inverted_index.Fashion-MNIST | 105 |
| abstract_inverted_index.applications. | 17 |
| abstract_inverted_index.approximately | 83 |
| abstract_inverted_index.computational | 91 |
| abstract_inverted_index.demonstrating | 12 |
| abstract_inverted_index.Fashion-MNIST. | 118 |
| abstract_inverted_index.hyperparameters | 142 |
| abstract_inverted_index.temporal-spatial | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 16 |
| citation_normalized_percentile |