Enhanced Infrared Defect Detection for UAVs Using Wavelet-Based Image Processing and Channel Attention-Integrated SSD Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3516080
In this paper, we develop a defect target detection algorithm based on image processing and feature matching to address background noise in the detection of defects in infrared images of Unmanned Aerial Vehicle (UAVs), as well as to improve real-time monitoring capabilities. We begin by constructing an infrared defect image processing model using wavelet multilayer decomposition, which effectively suppresses texture information within the complex background by reconstructing low-frequency and high-frequency coefficient images. To further enhance defect feature extraction, we segment and filter the reconstructed infrared image to obtain a clearer representation of infrared defect features. We also design a feature point matching algorithm that integrates SURF (Speeded-Up Robust Features) for feature extraction and target image matching. Finally, to further improve the real-time performance and accuracy of defect detection, we enhance the SSD (Single Shot MultiBox Detector) target detection algorithm by introducing the Channel Attention Mechanism (CAM) to create the SSD-CA model. Experimental results demonstrate that the proposed defect detection model achieves a defect detection accuracy of 99.4% on both the IT-UAV and MVTecAD datasets, with a recall rate of 97.68% after 3,000 iterations. Moreover, the results indicate that the network incorporating the channel attention mechanism significantly improves detection performance compared to the network without it, with the defect detection index improving by 1.11%, and the false detection and leakage rates reduced by 0.69% and 0.44%, respectively. These findings suggest that the SSD-CA model proposed in this paper not only effectively extracts and enhances defect features but also intelligently suppresses non-essentia feature information in the background, thereby enabling real-time automatic detection of infrared image defects. This provides robust technical support for UAV inspection and maintenance in complex environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3516080
- OA Status
- gold
- Cited By
- 3
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405304009
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405304009Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3516080Digital Object Identifier
- Title
-
Enhanced Infrared Defect Detection for UAVs Using Wavelet-Based Image Processing and Channel Attention-Integrated SSD ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Jining Zhao, R. Zhang, Shengyong Chen, Yihui Duan, Zhiyuan Wang, Qingchen LiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3516080Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3516080Direct OA link when available
- Concepts
-
Computer science, Wavelet, Artificial intelligence, Computer vision, Wavelet transform, Image processing, Channel (broadcasting), Image (mathematics), Pattern recognition (psychology), TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405304009 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3516080 |
| ids.doi | https://doi.org/10.1109/access.2024.3516080 |
| ids.openalex | https://openalex.org/W4405304009 |
| fwci | 2.04312549 |
| type | article |
| title | Enhanced Infrared Defect Detection for UAVs Using Wavelet-Based Image Processing and Channel Attention-Integrated SSD Model |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 188796 |
| biblio.first_page | 188787 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T14319 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9562000036239624 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Currency Recognition and Detection |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6760911345481873 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C47432892 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6043535470962524 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[1].display_name | Wavelet |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5703864693641663 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5444872975349426 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C196216189 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5367084741592407 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[4].display_name | Wavelet transform |
| concepts[5].id | https://openalex.org/C9417928 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5014481544494629 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[5].display_name | Image processing |
| concepts[6].id | https://openalex.org/C127162648 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4943723678588867 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[6].display_name | Channel (broadcasting) |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3589639961719513 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3315592408180237 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13541170954704285 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6760911345481873 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/wavelet |
| keywords[1].score | 0.6043535470962524 |
| keywords[1].display_name | Wavelet |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5703864693641663 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5444872975349426 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/wavelet-transform |
| keywords[4].score | 0.5367084741592407 |
| keywords[4].display_name | Wavelet transform |
| keywords[5].id | https://openalex.org/keywords/image-processing |
| keywords[5].score | 0.5014481544494629 |
| keywords[5].display_name | Image processing |
| keywords[6].id | https://openalex.org/keywords/channel |
| keywords[6].score | 0.4943723678588867 |
| keywords[6].display_name | Channel (broadcasting) |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.3589639961719513 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3315592408180237 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/telecommunications |
| keywords[9].score | 0.13541170954704285 |
| keywords[9].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3516080 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3516080 |
| locations[1].id | pmh:oai:doaj.org/article:a1576d472a014c35b38a21c6c617a784 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 188787-188796 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/a1576d472a014c35b38a21c6c617a784 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5104265256 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jining Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[0].affiliations[0].raw_affiliation_string | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[0].institutions[0].id | https://openalex.org/I17442442 |
| authorships[0].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jining Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[1].author.id | https://openalex.org/A5111000517 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | R. Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[1].affiliations[0].raw_affiliation_string | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[1].institutions[0].id | https://openalex.org/I17442442 |
| authorships[1].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruizhi Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[2].author.id | https://openalex.org/A5055627037 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6705-3831 |
| authorships[2].author.display_name | Shengyong Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[2].affiliations[0].raw_affiliation_string | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[2].institutions[0].id | https://openalex.org/I17442442 |
| authorships[2].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaogong Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[3].author.id | https://openalex.org/A5075847040 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-9219-7256 |
| authorships[3].author.display_name | Yihui Duan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[3].affiliations[0].raw_affiliation_string | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[3].institutions[0].id | https://openalex.org/I17442442 |
| authorships[3].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanbo Duan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[4].author.id | https://openalex.org/A5014870888 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6867-2386 |
| authorships[4].author.display_name | Zhiyuan Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[4].affiliations[0].raw_affiliation_string | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[4].institutions[0].id | https://openalex.org/I17442442 |
| authorships[4].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhiyuan Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | STATE GRID HEBEI EXTRA HIGH VOLTAGE Co., LTD, 66 Zhongsheng Road, Xinhua District, Shijiazhuang, Hebei, China |
| authorships[5].author.id | https://openalex.org/A5101402427 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9827-2578 |
| authorships[5].author.display_name | Qingchen Li |
| authorships[5].affiliations[0].raw_affiliation_string | Beijing Airwing Aviation Technology Co., LTD, No.15, Ronghua South Road, Beijing Economic and Technological Development Zone, Beijing, China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qingchen Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beijing Airwing Aviation Technology Co., LTD, No.15, Ronghua South Road, Beijing Economic and Technological Development Zone, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3516080 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Infrared Defect Detection for UAVs Using Wavelet-Based Image Processing and Channel Attention-Integrated SSD Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2382174632, https://openalex.org/W2129959498, https://openalex.org/W2784060934, https://openalex.org/W2902714807, https://openalex.org/W2537489131, https://openalex.org/W2046633342, https://openalex.org/W2394084632, https://openalex.org/W2358293514, https://openalex.org/W2059273319, https://openalex.org/W2077021924 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3516080 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3516080 |
| primary_location.id | doi:10.1109/access.2024.3516080 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3516080 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4395669328, https://openalex.org/W3202659840, https://openalex.org/W4392309467, https://openalex.org/W2972158684, https://openalex.org/W4402772491, https://openalex.org/W4399711193, https://openalex.org/W4391260595, https://openalex.org/W4400700394, https://openalex.org/W4398240529, https://openalex.org/W4387779880, https://openalex.org/W4399114166, https://openalex.org/W4221057665, https://openalex.org/W4391692106, https://openalex.org/W4394805406, https://openalex.org/W4393142641, https://openalex.org/W4387125908, https://openalex.org/W4388566466, https://openalex.org/W4390057581, https://openalex.org/W4391167220, https://openalex.org/W4396753607, https://openalex.org/W2334445587, https://openalex.org/W4313252134, https://openalex.org/W3041134889, https://openalex.org/W4389053153, https://openalex.org/W4390678457, https://openalex.org/W4391307050, https://openalex.org/W4392897397 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 5, 88, 98, 161, 175 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 72 |
| abstract_inverted_index.We | 42, 95 |
| abstract_inverted_index.an | 46 |
| abstract_inverted_index.as | 34, 36 |
| abstract_inverted_index.by | 44, 65, 139, 211, 221 |
| abstract_inverted_index.in | 21, 26, 234, 252, 274 |
| abstract_inverted_index.of | 24, 29, 91, 125, 165, 178, 260 |
| abstract_inverted_index.on | 11, 167 |
| abstract_inverted_index.to | 17, 37, 86, 117, 146, 200 |
| abstract_inverted_index.we | 3, 78, 128 |
| abstract_inverted_index.SSD | 131 |
| abstract_inverted_index.UAV | 270 |
| abstract_inverted_index.and | 14, 68, 80, 112, 123, 171, 213, 217, 223, 241, 272 |
| abstract_inverted_index.but | 245 |
| abstract_inverted_index.for | 109, 269 |
| abstract_inverted_index.it, | 204 |
| abstract_inverted_index.not | 237 |
| abstract_inverted_index.the | 22, 62, 82, 120, 130, 141, 148, 155, 169, 184, 188, 191, 201, 206, 214, 230, 253 |
| abstract_inverted_index.SURF | 105 |
| abstract_inverted_index.Shot | 133 |
| abstract_inverted_index.This | 264 |
| abstract_inverted_index.also | 96, 246 |
| abstract_inverted_index.both | 168 |
| abstract_inverted_index.only | 238 |
| abstract_inverted_index.rate | 177 |
| abstract_inverted_index.that | 103, 154, 187, 229 |
| abstract_inverted_index.this | 1, 235 |
| abstract_inverted_index.well | 35 |
| abstract_inverted_index.with | 174, 205 |
| abstract_inverted_index.(CAM) | 145 |
| abstract_inverted_index.0.69% | 222 |
| abstract_inverted_index.3,000 | 181 |
| abstract_inverted_index.99.4% | 166 |
| abstract_inverted_index.These | 226 |
| abstract_inverted_index.after | 180 |
| abstract_inverted_index.based | 10 |
| abstract_inverted_index.begin | 43 |
| abstract_inverted_index.false | 215 |
| abstract_inverted_index.image | 12, 49, 85, 114, 262 |
| abstract_inverted_index.index | 209 |
| abstract_inverted_index.model | 51, 159, 232 |
| abstract_inverted_index.noise | 20 |
| abstract_inverted_index.paper | 236 |
| abstract_inverted_index.point | 100 |
| abstract_inverted_index.rates | 219 |
| abstract_inverted_index.using | 52 |
| abstract_inverted_index.which | 56 |
| abstract_inverted_index.0.44%, | 224 |
| abstract_inverted_index.1.11%, | 212 |
| abstract_inverted_index.97.68% | 179 |
| abstract_inverted_index.Aerial | 31 |
| abstract_inverted_index.IT-UAV | 170 |
| abstract_inverted_index.Robust | 107 |
| abstract_inverted_index.SSD-CA | 149, 231 |
| abstract_inverted_index.create | 147 |
| abstract_inverted_index.defect | 6, 48, 75, 93, 126, 157, 162, 207, 243 |
| abstract_inverted_index.design | 97 |
| abstract_inverted_index.filter | 81 |
| abstract_inverted_index.images | 28 |
| abstract_inverted_index.model. | 150 |
| abstract_inverted_index.obtain | 87 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.recall | 176 |
| abstract_inverted_index.robust | 266 |
| abstract_inverted_index.target | 7, 113, 136 |
| abstract_inverted_index.within | 61 |
| abstract_inverted_index.(Single | 132 |
| abstract_inverted_index.(UAVs), | 33 |
| abstract_inverted_index.Channel | 142 |
| abstract_inverted_index.MVTecAD | 172 |
| abstract_inverted_index.Vehicle | 32 |
| abstract_inverted_index.address | 18 |
| abstract_inverted_index.channel | 192 |
| abstract_inverted_index.clearer | 89 |
| abstract_inverted_index.complex | 63, 275 |
| abstract_inverted_index.defects | 25 |
| abstract_inverted_index.develop | 4 |
| abstract_inverted_index.enhance | 74, 129 |
| abstract_inverted_index.feature | 15, 76, 99, 110, 250 |
| abstract_inverted_index.further | 73, 118 |
| abstract_inverted_index.images. | 71 |
| abstract_inverted_index.improve | 38, 119 |
| abstract_inverted_index.leakage | 218 |
| abstract_inverted_index.network | 189, 202 |
| abstract_inverted_index.reduced | 220 |
| abstract_inverted_index.results | 152, 185 |
| abstract_inverted_index.segment | 79 |
| abstract_inverted_index.suggest | 228 |
| abstract_inverted_index.support | 268 |
| abstract_inverted_index.texture | 59 |
| abstract_inverted_index.thereby | 255 |
| abstract_inverted_index.wavelet | 53 |
| abstract_inverted_index.without | 203 |
| abstract_inverted_index.Finally, | 116 |
| abstract_inverted_index.MultiBox | 134 |
| abstract_inverted_index.Unmanned | 30 |
| abstract_inverted_index.accuracy | 124, 164 |
| abstract_inverted_index.achieves | 160 |
| abstract_inverted_index.compared | 199 |
| abstract_inverted_index.defects. | 263 |
| abstract_inverted_index.enabling | 256 |
| abstract_inverted_index.enhances | 242 |
| abstract_inverted_index.extracts | 240 |
| abstract_inverted_index.features | 244 |
| abstract_inverted_index.findings | 227 |
| abstract_inverted_index.improves | 196 |
| abstract_inverted_index.indicate | 186 |
| abstract_inverted_index.infrared | 27, 47, 84, 92, 261 |
| abstract_inverted_index.matching | 16, 101 |
| abstract_inverted_index.proposed | 156, 233 |
| abstract_inverted_index.provides | 265 |
| abstract_inverted_index.Attention | 143 |
| abstract_inverted_index.Detector) | 135 |
| abstract_inverted_index.Features) | 108 |
| abstract_inverted_index.Mechanism | 144 |
| abstract_inverted_index.Moreover, | 183 |
| abstract_inverted_index.algorithm | 9, 102, 138 |
| abstract_inverted_index.attention | 193 |
| abstract_inverted_index.automatic | 258 |
| abstract_inverted_index.datasets, | 173 |
| abstract_inverted_index.detection | 8, 23, 137, 158, 163, 197, 208, 216, 259 |
| abstract_inverted_index.features. | 94 |
| abstract_inverted_index.improving | 210 |
| abstract_inverted_index.matching. | 115 |
| abstract_inverted_index.mechanism | 194 |
| abstract_inverted_index.real-time | 39, 121, 257 |
| abstract_inverted_index.technical | 267 |
| abstract_inverted_index.background | 19, 64 |
| abstract_inverted_index.detection, | 127 |
| abstract_inverted_index.extraction | 111 |
| abstract_inverted_index.inspection | 271 |
| abstract_inverted_index.integrates | 104 |
| abstract_inverted_index.monitoring | 40 |
| abstract_inverted_index.multilayer | 54 |
| abstract_inverted_index.processing | 13, 50 |
| abstract_inverted_index.suppresses | 58, 248 |
| abstract_inverted_index.(Speeded-Up | 106 |
| abstract_inverted_index.background, | 254 |
| abstract_inverted_index.coefficient | 70 |
| abstract_inverted_index.demonstrate | 153 |
| abstract_inverted_index.effectively | 57, 239 |
| abstract_inverted_index.extraction, | 77 |
| abstract_inverted_index.information | 60, 251 |
| abstract_inverted_index.introducing | 140 |
| abstract_inverted_index.iterations. | 182 |
| abstract_inverted_index.maintenance | 273 |
| abstract_inverted_index.performance | 122, 198 |
| abstract_inverted_index.Experimental | 151 |
| abstract_inverted_index.constructing | 45 |
| abstract_inverted_index.non-essentia | 249 |
| abstract_inverted_index.capabilities. | 41 |
| abstract_inverted_index.environments. | 276 |
| abstract_inverted_index.incorporating | 190 |
| abstract_inverted_index.intelligently | 247 |
| abstract_inverted_index.low-frequency | 67 |
| abstract_inverted_index.reconstructed | 83 |
| abstract_inverted_index.respectively. | 225 |
| abstract_inverted_index.significantly | 195 |
| abstract_inverted_index.decomposition, | 55 |
| abstract_inverted_index.high-frequency | 69 |
| abstract_inverted_index.reconstructing | 66 |
| abstract_inverted_index.representation | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.85233226 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |