Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23073736
Concept drift (CD) in data streaming scenarios such as networking intrusion detection systems (IDS) refers to the change in the statistical distribution of the data over time. There are five principal variants related to CD: incremental, gradual, recurrent, sudden, and blip. Genetic programming combiner (GPC) classification is an effective core candidate for data stream classification for IDS. However, its basic structure relies on the usage of traditional static machine learning models that receive onetime training, limiting its ability to handle CD. To address this issue, we propose an extended variant of the GPC using three main components. First, we replace existing classifiers with alternatives: online sequential extreme learning machine (OSELM), feature adaptive OSELM (FA-OSELM), and knowledge preservation OSELM (KP-OSELM). Second, we add two new components to the GPC, specifically, a data balancing and a classifier update. Third, the coordination between the sub-models produces three novel variants of the GPC: GPC-KOS for KA-OSELM; GPC-FOS for FA-OSELM; and GPC-OS for OSELM. This article presents the first data stream-based classification framework that provides novel strategies for handling CD variants. The experimental results demonstrate that both GPC-KOS and GPC-FOS outperform the traditional GPC and other state-of-the-art methods, and the transfer learning and memory features contribute to the effective handling of most types of CD. Moreover, the application of our incremental variants on real-world datasets (KDD Cup ‘99, CICIDS-2017, CSE-CIC-IDS-2018, and ISCX ‘12) demonstrate improved performance (GPC-FOS in connection with CSE-CIC-IDS-2018 and CICIDS-2017; GPC-KOS in connection with ISCX2012 and KDD Cup ‘99), with maximum accuracy rates of 100% and 98% by GPC-KOS and GPC-FOS, respectively. Additionally, our GPC variants do not show superior performance in handling blip drift.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23073736
- https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960
- OA Status
- gold
- Cited By
- 22
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4362639444
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4362639444Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23073736Digital Object Identifier
- Title
-
Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming CombinerWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-04Full publication date if available
- Authors
-
Methaq A. Shyaa, Zurinahni Zainol, Rosni Abdullah, Mohammed Anbar, Laith Alzubaidi, José SantamaríaList of authors in order
- Landing page
-
https://doi.org/10.3390/s23073736Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960Direct OA link when available
- Concepts
-
Concept drift, Computer science, Intrusion detection system, Artificial intelligence, Classifier (UML), Genetic programming, Machine learning, Data stream, Data mining, Limiting, Data stream mining, Pattern recognition (psychology), Engineering, Telecommunications, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 6, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4362639444 |
|---|---|
| doi | https://doi.org/10.3390/s23073736 |
| ids.doi | https://doi.org/10.3390/s23073736 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37050795 |
| ids.openalex | https://openalex.org/W4362639444 |
| fwci | 5.61974353 |
| type | article |
| title | Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner |
| biblio.issue | 7 |
| biblio.volume | 23 |
| biblio.last_page | 3736 |
| biblio.first_page | 3736 |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C60777511 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7700101137161255 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3045002 |
| concepts[0].display_name | Concept drift |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7442276477813721 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C35525427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6724233031272888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[2].display_name | Intrusion detection system |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6100578904151917 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C95623464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6094412803649902 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[4].display_name | Classifier (UML) |
| concepts[5].id | https://openalex.org/C110332635 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5961675047874451 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q629498 |
| concepts[5].display_name | Genetic programming |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5524951219558716 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2778484313 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49770548939704895 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1172540 |
| concepts[7].display_name | Data stream |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4540250897407532 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C188198153 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43003934621810913 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1613840 |
| concepts[9].display_name | Limiting |
| concepts[10].id | https://openalex.org/C89198739 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41787081956863403 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3079880 |
| concepts[10].display_name | Data stream mining |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3704039454460144 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11439964175224304 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C78519656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[14].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/concept-drift |
| keywords[0].score | 0.7700101137161255 |
| keywords[0].display_name | Concept drift |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7442276477813721 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[2].score | 0.6724233031272888 |
| keywords[2].display_name | Intrusion detection system |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6100578904151917 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/classifier |
| keywords[4].score | 0.6094412803649902 |
| keywords[4].display_name | Classifier (UML) |
| keywords[5].id | https://openalex.org/keywords/genetic-programming |
| keywords[5].score | 0.5961675047874451 |
| keywords[5].display_name | Genetic programming |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5524951219558716 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-stream |
| keywords[7].score | 0.49770548939704895 |
| keywords[7].display_name | Data stream |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4540250897407532 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/limiting |
| keywords[9].score | 0.43003934621810913 |
| keywords[9].display_name | Limiting |
| keywords[10].id | https://openalex.org/keywords/data-stream-mining |
| keywords[10].score | 0.41787081956863403 |
| keywords[10].display_name | Data stream mining |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3704039454460144 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.11439964175224304 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/s23073736 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23073736 |
| locations[1].id | pmid:37050795 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37050795 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10098915 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10098915/pdf/sensors-23-03736.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10098915 |
| locations[3].id | pmh:oai:doaj.org/article:df763907212e40d5976a7e98278183dc |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 23, Iss 7, p 3736 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/df763907212e40d5976a7e98278183dc |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/23/7/3736/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 23; Issue 7; Pages: 3736 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s23073736 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5037758934 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2088-2456 |
| authorships[0].author.display_name | Methaq A. Shyaa |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Sciences, Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I139322472 |
| authorships[0].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Methaq A. Shyaa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Sciences, Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[1].author.id | https://openalex.org/A5054313742 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8908-5263 |
| authorships[1].author.display_name | Zurinahni Zainol |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Sciences, Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I139322472 |
| authorships[1].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zurinahni Zainol |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Sciences, Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[2].author.id | https://openalex.org/A5051571958 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3061-5837 |
| authorships[2].author.display_name | Rosni Abdullah |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Sciences, Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I139322472 |
| authorships[2].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rosni Abdullah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Sciences, Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[3].author.id | https://openalex.org/A5015229013 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7026-6408 |
| authorships[3].author.display_name | Mohammed Anbar |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[3].affiliations[0].raw_affiliation_string | National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I139322472 |
| authorships[3].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohammed Anbar |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, USM, Gelugor 11800, Pulau Penang, Malaysia |
| authorships[4].author.id | https://openalex.org/A5102889969 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7296-5413 |
| authorships[4].author.display_name | Laith Alzubaidi |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I160993911 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I160993911 |
| authorships[4].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Queensland University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Laith Alzubaidi |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia |
| authorships[5].author.id | https://openalex.org/A5010765865 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2022-6838 |
| authorships[5].author.display_name | José Santamaría |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I191420491 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Jaén, 23071 Jaén, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I191420491 |
| authorships[5].institutions[0].ror | https://ror.org/0122p5f64 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I191420491 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Universidad de Jaén |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | José Santamaría |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, University of Jaén, 23071 Jaén, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental Learning Genetic Programming Combiner |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W4307392573, https://openalex.org/W2802243998, https://openalex.org/W2736127210, https://openalex.org/W2329342202, https://openalex.org/W2574092225, https://openalex.org/W4200217704, https://openalex.org/W2161835057, https://openalex.org/W1521014365, https://openalex.org/W2740428142, https://openalex.org/W2187127952 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23073736 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23073736 |
| primary_location.id | doi:10.3390/s23073736 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/7/3736/pdf?version=1681175960 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23073736 |
| publication_date | 2023-04-04 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3049977265, https://openalex.org/W3131534565, https://openalex.org/W3003440790, https://openalex.org/W6795389392, https://openalex.org/W3128972880, https://openalex.org/W2604756720, https://openalex.org/W3004689489, https://openalex.org/W3145436812, https://openalex.org/W4311897878, https://openalex.org/W4300817754, https://openalex.org/W2981697369, https://openalex.org/W2995450656, https://openalex.org/W3035735617, https://openalex.org/W3168855424, https://openalex.org/W4206268729, https://openalex.org/W3131088496, https://openalex.org/W3208097639, https://openalex.org/W6785333560, https://openalex.org/W3216815774, https://openalex.org/W4200065521, https://openalex.org/W3048836559, https://openalex.org/W1986953892, https://openalex.org/W3046492501, https://openalex.org/W4294442638, https://openalex.org/W3047236105, https://openalex.org/W4295916558, https://openalex.org/W3198054520, https://openalex.org/W4303449845, https://openalex.org/W4226125749, https://openalex.org/W3151210239, https://openalex.org/W3206231835, https://openalex.org/W6796534261, https://openalex.org/W3178838626, https://openalex.org/W3200313710, https://openalex.org/W3115143688, https://openalex.org/W2977431930, https://openalex.org/W3200219001, https://openalex.org/W4220787723, https://openalex.org/W6601248315, https://openalex.org/W2058204668, https://openalex.org/W2946782444, https://openalex.org/W2891696143, https://openalex.org/W2099940443, https://openalex.org/W6748503732, https://openalex.org/W2031163547, https://openalex.org/W4226056018, https://openalex.org/W31566076, https://openalex.org/W3102015031, https://openalex.org/W3166207064, https://openalex.org/W4220924029, https://openalex.org/W2789828921, https://openalex.org/W3163933792 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 129, 133 |
| abstract_inverted_index.CD | 174 |
| abstract_inverted_index.To | 81 |
| abstract_inverted_index.an | 47, 87 |
| abstract_inverted_index.as | 8 |
| abstract_inverted_index.by | 255 |
| abstract_inverted_index.do | 264 |
| abstract_inverted_index.in | 3, 18, 232, 239, 269 |
| abstract_inverted_index.is | 46 |
| abstract_inverted_index.of | 22, 65, 90, 146, 205, 208, 213, 251 |
| abstract_inverted_index.on | 62, 217 |
| abstract_inverted_index.to | 15, 33, 78, 125, 201 |
| abstract_inverted_index.we | 85, 98, 120 |
| abstract_inverted_index.98% | 254 |
| abstract_inverted_index.CD. | 80, 209 |
| abstract_inverted_index.CD: | 34 |
| abstract_inverted_index.Cup | 221, 245 |
| abstract_inverted_index.GPC | 92, 188, 262 |
| abstract_inverted_index.KDD | 244 |
| abstract_inverted_index.The | 176 |
| abstract_inverted_index.add | 121 |
| abstract_inverted_index.and | 39, 114, 132, 155, 183, 189, 193, 197, 225, 236, 243, 253, 257 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.for | 51, 55, 150, 153, 157, 172 |
| abstract_inverted_index.its | 58, 76 |
| abstract_inverted_index.new | 123 |
| abstract_inverted_index.not | 265 |
| abstract_inverted_index.our | 214, 261 |
| abstract_inverted_index.the | 16, 19, 23, 63, 91, 126, 137, 140, 147, 162, 186, 194, 202, 211 |
| abstract_inverted_index.two | 122 |
| abstract_inverted_index.(CD) | 2 |
| abstract_inverted_index.(KDD | 220 |
| abstract_inverted_index.100% | 252 |
| abstract_inverted_index.GPC, | 127 |
| abstract_inverted_index.GPC: | 148 |
| abstract_inverted_index.IDS. | 56 |
| abstract_inverted_index.ISCX | 226 |
| abstract_inverted_index.This | 159 |
| abstract_inverted_index.blip | 271 |
| abstract_inverted_index.both | 181 |
| abstract_inverted_index.core | 49 |
| abstract_inverted_index.data | 4, 24, 52, 130, 164 |
| abstract_inverted_index.five | 29 |
| abstract_inverted_index.main | 95 |
| abstract_inverted_index.most | 206 |
| abstract_inverted_index.over | 25 |
| abstract_inverted_index.show | 266 |
| abstract_inverted_index.such | 7 |
| abstract_inverted_index.that | 71, 168, 180 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.with | 102, 234, 241, 247 |
| abstract_inverted_index.(GPC) | 44 |
| abstract_inverted_index.(IDS) | 13 |
| abstract_inverted_index.OSELM | 112, 117 |
| abstract_inverted_index.There | 27 |
| abstract_inverted_index.basic | 59 |
| abstract_inverted_index.blip. | 40 |
| abstract_inverted_index.drift | 1 |
| abstract_inverted_index.first | 163 |
| abstract_inverted_index.novel | 144, 170 |
| abstract_inverted_index.other | 190 |
| abstract_inverted_index.rates | 250 |
| abstract_inverted_index.three | 94, 143 |
| abstract_inverted_index.time. | 26 |
| abstract_inverted_index.types | 207 |
| abstract_inverted_index.usage | 64 |
| abstract_inverted_index.using | 93 |
| abstract_inverted_index.First, | 97 |
| abstract_inverted_index.GPC-OS | 156 |
| abstract_inverted_index.OSELM. | 158 |
| abstract_inverted_index.Third, | 136 |
| abstract_inverted_index.change | 17 |
| abstract_inverted_index.drift. | 272 |
| abstract_inverted_index.handle | 79 |
| abstract_inverted_index.issue, | 84 |
| abstract_inverted_index.memory | 198 |
| abstract_inverted_index.models | 70 |
| abstract_inverted_index.online | 104 |
| abstract_inverted_index.refers | 14 |
| abstract_inverted_index.relies | 61 |
| abstract_inverted_index.static | 67 |
| abstract_inverted_index.stream | 53 |
| abstract_inverted_index.‘12) | 227 |
| abstract_inverted_index.‘99, | 222 |
| abstract_inverted_index.Concept | 0 |
| abstract_inverted_index.GPC-FOS | 152, 184 |
| abstract_inverted_index.GPC-KOS | 149, 182, 238, 256 |
| abstract_inverted_index.Genetic | 41 |
| abstract_inverted_index.Second, | 119 |
| abstract_inverted_index.ability | 77 |
| abstract_inverted_index.address | 82 |
| abstract_inverted_index.article | 160 |
| abstract_inverted_index.between | 139 |
| abstract_inverted_index.extreme | 106 |
| abstract_inverted_index.feature | 110 |
| abstract_inverted_index.machine | 68, 108 |
| abstract_inverted_index.maximum | 248 |
| abstract_inverted_index.onetime | 73 |
| abstract_inverted_index.propose | 86 |
| abstract_inverted_index.receive | 72 |
| abstract_inverted_index.related | 32 |
| abstract_inverted_index.replace | 99 |
| abstract_inverted_index.results | 178 |
| abstract_inverted_index.sudden, | 38 |
| abstract_inverted_index.systems | 12 |
| abstract_inverted_index.update. | 135 |
| abstract_inverted_index.variant | 89 |
| abstract_inverted_index.‘99), | 246 |
| abstract_inverted_index.(GPC-FOS | 231 |
| abstract_inverted_index.(OSELM), | 109 |
| abstract_inverted_index.GPC-FOS, | 258 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.ISCX2012 | 242 |
| abstract_inverted_index.accuracy | 249 |
| abstract_inverted_index.adaptive | 111 |
| abstract_inverted_index.combiner | 43 |
| abstract_inverted_index.datasets | 219 |
| abstract_inverted_index.existing | 100 |
| abstract_inverted_index.extended | 88 |
| abstract_inverted_index.features | 199 |
| abstract_inverted_index.gradual, | 36 |
| abstract_inverted_index.handling | 173, 204, 270 |
| abstract_inverted_index.improved | 229 |
| abstract_inverted_index.learning | 69, 107, 196 |
| abstract_inverted_index.limiting | 75 |
| abstract_inverted_index.methods, | 192 |
| abstract_inverted_index.presents | 161 |
| abstract_inverted_index.produces | 142 |
| abstract_inverted_index.provides | 169 |
| abstract_inverted_index.superior | 267 |
| abstract_inverted_index.transfer | 195 |
| abstract_inverted_index.variants | 31, 145, 216, 263 |
| abstract_inverted_index.FA-OSELM; | 154 |
| abstract_inverted_index.KA-OSELM; | 151 |
| abstract_inverted_index.Moreover, | 210 |
| abstract_inverted_index.balancing | 131 |
| abstract_inverted_index.candidate | 50 |
| abstract_inverted_index.detection | 11 |
| abstract_inverted_index.effective | 48, 203 |
| abstract_inverted_index.framework | 167 |
| abstract_inverted_index.intrusion | 10 |
| abstract_inverted_index.knowledge | 115 |
| abstract_inverted_index.principal | 30 |
| abstract_inverted_index.scenarios | 6 |
| abstract_inverted_index.streaming | 5 |
| abstract_inverted_index.structure | 60 |
| abstract_inverted_index.training, | 74 |
| abstract_inverted_index.variants. | 175 |
| abstract_inverted_index.classifier | 134 |
| abstract_inverted_index.components | 124 |
| abstract_inverted_index.connection | 233, 240 |
| abstract_inverted_index.contribute | 200 |
| abstract_inverted_index.networking | 9 |
| abstract_inverted_index.outperform | 185 |
| abstract_inverted_index.real-world | 218 |
| abstract_inverted_index.recurrent, | 37 |
| abstract_inverted_index.sequential | 105 |
| abstract_inverted_index.strategies | 171 |
| abstract_inverted_index.sub-models | 141 |
| abstract_inverted_index.(FA-OSELM), | 113 |
| abstract_inverted_index.(KP-OSELM). | 118 |
| abstract_inverted_index.application | 212 |
| abstract_inverted_index.classifiers | 101 |
| abstract_inverted_index.components. | 96 |
| abstract_inverted_index.demonstrate | 179, 228 |
| abstract_inverted_index.incremental | 215 |
| abstract_inverted_index.performance | 230, 268 |
| abstract_inverted_index.programming | 42 |
| abstract_inverted_index.statistical | 20 |
| abstract_inverted_index.traditional | 66, 187 |
| abstract_inverted_index.CICIDS-2017, | 223 |
| abstract_inverted_index.CICIDS-2017; | 237 |
| abstract_inverted_index.coordination | 138 |
| abstract_inverted_index.distribution | 21 |
| abstract_inverted_index.experimental | 177 |
| abstract_inverted_index.incremental, | 35 |
| abstract_inverted_index.preservation | 116 |
| abstract_inverted_index.stream-based | 165 |
| abstract_inverted_index.Additionally, | 260 |
| abstract_inverted_index.alternatives: | 103 |
| abstract_inverted_index.respectively. | 259 |
| abstract_inverted_index.specifically, | 128 |
| abstract_inverted_index.classification | 45, 54, 166 |
| abstract_inverted_index.CSE-CIC-IDS-2018 | 235 |
| abstract_inverted_index.state-of-the-art | 191 |
| abstract_inverted_index.CSE-CIC-IDS-2018, | 224 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5054313742, https://openalex.org/A5015229013, https://openalex.org/A5102889969 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I139322472, https://openalex.org/I160993911 |
| citation_normalized_percentile.value | 0.95623467 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |