Enhanced market trend forecasting using machine learning models: a study with external factor integration Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.55640/business/volume06issue01-02
This study explores the application of advanced machine learning models for market trend forecasting, incorporating external factors such as economic indicators and sentiment analysis to enhance prediction accuracy. Comparative analysis of models including Random Forest, Support Vector Machines, Gradient Boosting, and Neural Networks revealed distinct performance differences, with Gradient Boosting achieving the highest accuracy of 92.7% and the lowest mean squared error of 0.014. External factors contributed significantly to improving model precision, as evidenced by a 7.5% increase in overall forecasting accuracy. The study emphasizes the efficacy of integrating diverse machine learning algorithms and external variables in creating robust forecasting systems. These findings highlight the potential for machine learning to revolutionize market analysis and decision-making, offering practical implications for industries seeking data-driven strategies to optimize performance in dynamic economic environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.55640/business/volume06issue01-02
- https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117
- OA Status
- diamond
- Cited By
- 2
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406150747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406150747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55640/business/volume06issue01-02Digital Object Identifier
- Title
-
Enhanced market trend forecasting using machine learning models: a study with external factor integrationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-07Full publication date if available
- Authors
-
Md Shakhaowat Hossain, Aminuddin A Khan, Pritom Das, Mainul Haque, Fnu Kamruzzaman, Sharmin Akter, A T M Faiz Ahmed, Md Rashel MiahList of authors in order
- Landing page
-
https://doi.org/10.55640/business/volume06issue01-02Publisher landing page
- PDF URL
-
https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117Direct OA link when available
- Concepts
-
Gradient boosting, Machine learning, Random forest, Boosting (machine learning), Artificial intelligence, Computer science, Support vector machine, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406150747 |
|---|---|
| doi | https://doi.org/10.55640/business/volume06issue01-02 |
| ids.doi | https://doi.org/10.55640/business/volume06issue01-02 |
| ids.openalex | https://openalex.org/W4406150747 |
| fwci | 11.01364221 |
| type | article |
| title | Enhanced market trend forecasting using machine learning models: a study with external factor integration |
| biblio.issue | 01 |
| biblio.volume | 06 |
| biblio.last_page | 12 |
| biblio.first_page | 5 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9918000102043152 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9580000042915344 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C70153297 |
| concepts[0].level | 3 |
| concepts[0].score | 0.859800398349762 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[0].display_name | Gradient boosting |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7451314926147461 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6951315402984619 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C46686674 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6900002360343933 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[3].display_name | Boosting (machine learning) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6844090223312378 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6514310836791992 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C12267149 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6425253748893738 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[6].display_name | Support vector machine |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5986610054969788 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/gradient-boosting |
| keywords[0].score | 0.859800398349762 |
| keywords[0].display_name | Gradient boosting |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.7451314926147461 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.6951315402984619 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/boosting |
| keywords[3].score | 0.6900002360343933 |
| keywords[3].display_name | Boosting (machine learning) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6844090223312378 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6514310836791992 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/support-vector-machine |
| keywords[6].score | 0.6425253748893738 |
| keywords[6].display_name | Support vector machine |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.5986610054969788 |
| keywords[7].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.55640/business/volume06issue01-02 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210237776 |
| locations[0].source.issn | 2375-9607, 2375-9615 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2375-9607 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Interdisciplinary Business Economics Advancement Journal |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Interdisciplinary Business Economics Advancement Journal |
| locations[0].landing_page_url | https://doi.org/10.55640/business/volume06issue01-02 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114585070 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Md Shakhaowat Hossain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Md Shakhaowat Hossain |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113512056 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-2198-4173 |
| authorships[1].author.display_name | Aminuddin A Khan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Afrina Khan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112355307 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pritom Das |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pritom Das |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5040414451 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6124-7993 |
| authorships[3].author.display_name | Mainul Haque |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Md Sayem Ul Haque |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5115640255 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Fnu Kamruzzaman |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fnu Kamruzzaman |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5045788474 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8210-3959 |
| authorships[5].author.display_name | Sharmin Akter |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sharmin Akter |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5089380303 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9508-044X |
| authorships[6].author.display_name | A T M Faiz Ahmed |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Adib Ahmed |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5113367846 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Md Rashel Miah |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Md Rashel Miah |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-08T00:00:00 |
| display_name | Enhanced market trend forecasting using machine learning models: a study with external factor integration |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2967733078, https://openalex.org/W4396689146, https://openalex.org/W4200112873, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W2955796858, https://openalex.org/W2885778889, https://openalex.org/W4310224730, https://openalex.org/W2766514146 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55640/business/volume06issue01-02 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210237776 |
| best_oa_location.source.issn | 2375-9607, 2375-9615 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2375-9607 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Interdisciplinary Business Economics Advancement Journal |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Interdisciplinary Business Economics Advancement Journal |
| best_oa_location.landing_page_url | https://doi.org/10.55640/business/volume06issue01-02 |
| primary_location.id | doi:10.55640/business/volume06issue01-02 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210237776 |
| primary_location.source.issn | 2375-9607, 2375-9615 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2375-9607 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Interdisciplinary Business Economics Advancement Journal |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.iibajournal.org/index.php/iibeaj/article/download/54/54/117 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Interdisciplinary Business Economics Advancement Journal |
| primary_location.landing_page_url | https://doi.org/10.55640/business/volume06issue01-02 |
| publication_date | 2025-01-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4403867126, https://openalex.org/W6713134421, https://openalex.org/W2171468534, https://openalex.org/W3102476541, https://openalex.org/W6748002556, https://openalex.org/W2624385633, https://openalex.org/W2064675550, https://openalex.org/W6752867117, https://openalex.org/W2891665774, https://openalex.org/W2767547957, https://openalex.org/W4404394125, https://openalex.org/W4404394113, https://openalex.org/W4324359030, https://openalex.org/W4200152289, https://openalex.org/W4404394167, https://openalex.org/W3131823290, https://openalex.org/W4403254068, https://openalex.org/W4403692593, https://openalex.org/W4405215985, https://openalex.org/W4405413926, https://openalex.org/W4404636683, https://openalex.org/W4405215627, https://openalex.org/W4405404889, https://openalex.org/W4405771319 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 75 |
| abstract_inverted_index.as | 18, 72 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 78, 96, 126 |
| abstract_inverted_index.of | 5, 30, 54, 62, 87 |
| abstract_inverted_index.to | 24, 68, 109, 123 |
| abstract_inverted_index.The | 82 |
| abstract_inverted_index.and | 21, 40, 56, 93, 113 |
| abstract_inverted_index.for | 10, 106, 118 |
| abstract_inverted_index.the | 3, 51, 57, 85, 104 |
| abstract_inverted_index.7.5% | 76 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.mean | 59 |
| abstract_inverted_index.such | 17 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.92.7% | 55 |
| abstract_inverted_index.These | 101 |
| abstract_inverted_index.error | 61 |
| abstract_inverted_index.model | 70 |
| abstract_inverted_index.study | 1, 83 |
| abstract_inverted_index.trend | 12 |
| abstract_inverted_index.0.014. | 63 |
| abstract_inverted_index.Neural | 41 |
| abstract_inverted_index.Random | 33 |
| abstract_inverted_index.Vector | 36 |
| abstract_inverted_index.lowest | 58 |
| abstract_inverted_index.market | 11, 111 |
| abstract_inverted_index.models | 9, 31 |
| abstract_inverted_index.robust | 98 |
| abstract_inverted_index.Forest, | 34 |
| abstract_inverted_index.Support | 35 |
| abstract_inverted_index.diverse | 89 |
| abstract_inverted_index.dynamic | 127 |
| abstract_inverted_index.enhance | 25 |
| abstract_inverted_index.factors | 16, 65 |
| abstract_inverted_index.highest | 52 |
| abstract_inverted_index.machine | 7, 90, 107 |
| abstract_inverted_index.overall | 79 |
| abstract_inverted_index.seeking | 120 |
| abstract_inverted_index.squared | 60 |
| abstract_inverted_index.Boosting | 49 |
| abstract_inverted_index.External | 64 |
| abstract_inverted_index.Gradient | 38, 48 |
| abstract_inverted_index.Networks | 42 |
| abstract_inverted_index.accuracy | 53 |
| abstract_inverted_index.advanced | 6 |
| abstract_inverted_index.analysis | 23, 29, 112 |
| abstract_inverted_index.creating | 97 |
| abstract_inverted_index.distinct | 44 |
| abstract_inverted_index.economic | 19, 128 |
| abstract_inverted_index.efficacy | 86 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.external | 15, 94 |
| abstract_inverted_index.findings | 102 |
| abstract_inverted_index.increase | 77 |
| abstract_inverted_index.learning | 8, 91, 108 |
| abstract_inverted_index.offering | 115 |
| abstract_inverted_index.optimize | 124 |
| abstract_inverted_index.revealed | 43 |
| abstract_inverted_index.systems. | 100 |
| abstract_inverted_index.Boosting, | 39 |
| abstract_inverted_index.Machines, | 37 |
| abstract_inverted_index.accuracy. | 27, 81 |
| abstract_inverted_index.achieving | 50 |
| abstract_inverted_index.evidenced | 73 |
| abstract_inverted_index.highlight | 103 |
| abstract_inverted_index.improving | 69 |
| abstract_inverted_index.including | 32 |
| abstract_inverted_index.potential | 105 |
| abstract_inverted_index.practical | 116 |
| abstract_inverted_index.sentiment | 22 |
| abstract_inverted_index.variables | 95 |
| abstract_inverted_index.algorithms | 92 |
| abstract_inverted_index.emphasizes | 84 |
| abstract_inverted_index.indicators | 20 |
| abstract_inverted_index.industries | 119 |
| abstract_inverted_index.precision, | 71 |
| abstract_inverted_index.prediction | 26 |
| abstract_inverted_index.strategies | 122 |
| abstract_inverted_index.Comparative | 28 |
| abstract_inverted_index.application | 4 |
| abstract_inverted_index.contributed | 66 |
| abstract_inverted_index.data-driven | 121 |
| abstract_inverted_index.forecasting | 80, 99 |
| abstract_inverted_index.integrating | 88 |
| abstract_inverted_index.performance | 45, 125 |
| abstract_inverted_index.differences, | 46 |
| abstract_inverted_index.forecasting, | 13 |
| abstract_inverted_index.implications | 117 |
| abstract_inverted_index.environments. | 129 |
| abstract_inverted_index.incorporating | 14 |
| abstract_inverted_index.revolutionize | 110 |
| abstract_inverted_index.significantly | 67 |
| abstract_inverted_index.decision-making, | 114 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.94237999 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |