Enhanced Myocardial Infarction Identification in Phonocardiogram Signals Using Segmented Feature Extraction and Transfer Learning-Based Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3338853
Myocardial Infarction (MI), commonly known as a heart attack, is a type of cardiovascular disease characterized by the death of heart muscle cells. This condition occurs due to the blockage of blood vessels around the heart, inhibiting blood flow and causing an insufficient oxygen supply to the body. Typically, cardiovascular disease tests involve electrocardiogram (ECG) and photoplethysmogram (PPG) signals. In recent years, researchers have explored the application of Phonocardiogram (PCG) signals for cardiovascular detection due to their non-invasive, efficient, accessible, and cost-effective nature. While deep learning has been successful in object detection in digital images, its application to PCG signals for heart attack detection is rare. This study bridges this gap by introducing an enhanced technique called the Myocardial Infarction Detection System (MIDs). In contrast to previous deep learning research, this study employs a transfer learning algorithm as a classifier for MI feature datasets. Feature extraction is performed in segments to obtain more accurate MI features. Six feature extraction methods and transfer learning models based on Convolutional Neural Networks (CNN) using the VGG-16 architecture were selected as the primary components for MI identification. Additionally, this study compares these models with other CNN transfer learning models, such as VGG-19 and Xception, to assess their performance. Two experimental scenarios were conducted to evaluate MIDs performance in MI detection: experiments without hyperparameter tuning and with hyperparameter tuning. The results indicate that MIDs with CNN (VGG-16) after tuning exhibited the highest detection performance compared to other transfer learning CNN models, both with and without tuning. The accuracy, specificity, and sensitivity of MIDS detection with this configuration were 96.7%, 96.0%, and 97.4%, respectively. This research contributes to the development of an enhanced MI detection technique based on PCG signals using a transfer learning CNN.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3338853
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdf
- OA Status
- gold
- Cited By
- 23
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389232920
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389232920Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3338853Digital Object Identifier
- Title
-
Enhanced Myocardial Infarction Identification in Phonocardiogram Signals Using Segmented Feature Extraction and Transfer Learning-Based ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Satria Mandala, Sabilla Suci Amini, Adiwijaya Adiwijaya, Aulia Rayhan Syaifullah, Miftah Pramudyo, Siti Nurmaini, Abdul Hanan AbdullahList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3338853Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdfDirect OA link when available
- Concepts
-
Transfer of learning, Convolutional neural network, Computer science, Phonocardiogram, Artificial intelligence, Feature extraction, Pattern recognition (psychology), Deep learning, Feature learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 8Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389232920 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3338853 |
| ids.doi | https://doi.org/10.1109/access.2023.3338853 |
| ids.openalex | https://openalex.org/W4389232920 |
| fwci | 7.75962467 |
| type | article |
| title | Enhanced Myocardial Infarction Identification in Phonocardiogram Signals Using Segmented Feature Extraction and Transfer Learning-Based Classification |
| awards[0].id | https://openalex.org/G8920980040 |
| awards[0].funder_id | https://openalex.org/F4320319804 |
| awards[0].display_name | |
| awards[0].funder_award_id | 82/II.7/HK/2022 |
| awards[0].funder_display_name | Badan Riset dan Inovasi Nasional |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 136665 |
| biblio.first_page | 136654 |
| topics[0].id | https://openalex.org/T12419 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Phonocardiography and Auscultation Techniques |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9817000031471252 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9578999876976013 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| funders[0].id | https://openalex.org/F4320319804 |
| funders[0].ror | |
| funders[0].display_name | Badan Riset dan Inovasi Nasional |
| funders[1].id | https://openalex.org/F4320328515 |
| funders[1].ror | |
| funders[1].display_name | Lembaga Pengelola Dana Pendidikan |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7055312395095825 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.701519787311554 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.701147198677063 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C159693508 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6910049915313721 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3301075 |
| concepts[3].display_name | Phonocardiogram |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.68206787109375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6615793704986572 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5652506947517395 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5514869093894958 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C59404180 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4476430416107178 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[8].display_name | Feature learning |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.7055312395095825 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.701519787311554 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.701147198677063 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/phonocardiogram |
| keywords[3].score | 0.6910049915313721 |
| keywords[3].display_name | Phonocardiogram |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.68206787109375 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.6615793704986572 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5652506947517395 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5514869093894958 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/feature-learning |
| keywords[8].score | 0.4476430416107178 |
| keywords[8].display_name | Feature learning |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3338853 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3338853 |
| locations[1].id | pmh:oai:doaj.org/article:2ed6901085dc47238309e9fad8057f05 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 11, Pp 136654-136665 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/2ed6901085dc47238309e9fad8057f05 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5070266538 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Satria Mandala |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[0].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I862893732 |
| authorships[0].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Telkom University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Satria Mandala |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia, School of Computing, Telkom University, Bandung, Indonesia |
| authorships[1].author.id | https://openalex.org/A5113060174 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sabilla Suci Amini |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[1].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I862893732 |
| authorships[1].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Telkom University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sabilla Suci Amini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia, School of Computing, Telkom University, Bandung, Indonesia |
| authorships[2].author.id | https://openalex.org/A5061473902 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3518-7587 |
| authorships[2].author.display_name | Adiwijaya Adiwijaya |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[2].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I862893732 |
| authorships[2].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Telkom University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Adiwijaya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia, School of Computing, Telkom University, Bandung, Indonesia |
| authorships[3].author.id | https://openalex.org/A5085173658 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aulia Rayhan Syaifullah |
| authorships[3].countries | ID |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing, Telkom University, Bandung, Indonesia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[3].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[3].institutions[0].id | https://openalex.org/I862893732 |
| authorships[3].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[3].institutions[0].country_code | ID |
| authorships[3].institutions[0].display_name | Telkom University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aulia Rayhan Syaifullah |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia, School of Computing, Telkom University, Bandung, Indonesia |
| authorships[4].author.id | https://openalex.org/A5037755335 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5980-7296 |
| authorships[4].author.display_name | Miftah Pramudyo |
| authorships[4].countries | ID |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I91819753 |
| authorships[4].affiliations[0].raw_affiliation_string | Departement of Cardiology and Vascular Medicine, Padjadjaran University, Bandung, Indonesia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I862893732 |
| authorships[4].affiliations[1].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[4].institutions[0].id | https://openalex.org/I91819753 |
| authorships[4].institutions[0].ror | https://ror.org/00xqf8t64 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I91819753 |
| authorships[4].institutions[0].country_code | ID |
| authorships[4].institutions[0].display_name | Padjadjaran University |
| authorships[4].institutions[1].id | https://openalex.org/I862893732 |
| authorships[4].institutions[1].ror | https://ror.org/0004wsx81 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I862893732 |
| authorships[4].institutions[1].country_code | ID |
| authorships[4].institutions[1].display_name | Telkom University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Miftah Pramudyo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Departement of Cardiology and Vascular Medicine, Padjadjaran University, Bandung, Indonesia, Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[5].author.id | https://openalex.org/A5082623277 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8024-2952 |
| authorships[5].author.display_name | Siti Nurmaini |
| authorships[5].countries | ID |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I271888150 |
| authorships[5].affiliations[0].raw_affiliation_string | Intelligent System Research Group, Universitas Sriwijaya, Palembang, South Sumatra, Indonesia |
| authorships[5].institutions[0].id | https://openalex.org/I271888150 |
| authorships[5].institutions[0].ror | https://ror.org/030bmb197 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I271888150 |
| authorships[5].institutions[0].country_code | ID |
| authorships[5].institutions[0].display_name | Sriwijaya University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Siti Nurmaini |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Intelligent System Research Group, Universitas Sriwijaya, Palembang, South Sumatra, Indonesia |
| authorships[6].author.id | https://openalex.org/A5051692886 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4948-9607 |
| authorships[6].author.display_name | Abdul Hanan Abdullah |
| authorships[6].countries | ID, MY |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I862893732 |
| authorships[6].affiliations[0].raw_affiliation_string | Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4576418 |
| authorships[6].affiliations[1].raw_affiliation_string | Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia |
| authorships[6].institutions[0].id | https://openalex.org/I862893732 |
| authorships[6].institutions[0].ror | https://ror.org/0004wsx81 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I862893732 |
| authorships[6].institutions[0].country_code | ID |
| authorships[6].institutions[0].display_name | Telkom University |
| authorships[6].institutions[1].id | https://openalex.org/I4576418 |
| authorships[6].institutions[1].ror | https://ror.org/026w31v75 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I4576418 |
| authorships[6].institutions[1].country_code | MY |
| authorships[6].institutions[1].display_name | University of Technology Malaysia |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Abdul Hanan Abdullah |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Myocardial Infarction Identification in Phonocardiogram Signals Using Segmented Feature Extraction and Transfer Learning-Based Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12419 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Phonocardiography and Auscultation Techniques |
| related_works | https://openalex.org/W3183901164, https://openalex.org/W3135818718, https://openalex.org/W4290188444, https://openalex.org/W3167935049, https://openalex.org/W3003905048, https://openalex.org/W2253429366, https://openalex.org/W3127975138, https://openalex.org/W2440023763, https://openalex.org/W2962474440, https://openalex.org/W4309346246 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3338853 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3338853 |
| primary_location.id | doi:10.1109/access.2023.3338853 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10339316.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3338853 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3119698209, https://openalex.org/W2913789442, https://openalex.org/W2944352165, https://openalex.org/W3198728103, https://openalex.org/W3157065363, https://openalex.org/W3093635124, https://openalex.org/W3194485036, https://openalex.org/W4380995220, https://openalex.org/W2990693542, https://openalex.org/W3005985192, https://openalex.org/W2915954229, https://openalex.org/W4293232174, https://openalex.org/W3124189349, https://openalex.org/W6927335270, https://openalex.org/W3159427491, https://openalex.org/W2961664025, https://openalex.org/W3132952621, https://openalex.org/W4387191508, https://openalex.org/W3120627055, https://openalex.org/W2977063526, https://openalex.org/W3112789885, https://openalex.org/W2804483946, https://openalex.org/W3044140833, https://openalex.org/W4289204962, https://openalex.org/W6712338194, https://openalex.org/W2076608692, https://openalex.org/W2118724348, https://openalex.org/W2739598993, https://openalex.org/W3127996201, https://openalex.org/W2012393389, https://openalex.org/W3023990724, https://openalex.org/W3081953417, https://openalex.org/W2395579298, https://openalex.org/W3087507349, https://openalex.org/W3093377669, https://openalex.org/W4387383071, https://openalex.org/W3097509539, https://openalex.org/W4206572207, https://openalex.org/W3012684726, https://openalex.org/W2981788075, https://openalex.org/W2980825080, https://openalex.org/W4322500729, https://openalex.org/W4382195656, https://openalex.org/W2041875327, https://openalex.org/W2397082594, https://openalex.org/W3133877534 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 6, 10, 133, 138, 285 |
| abstract_inverted_index.In | 59, 123 |
| abstract_inverted_index.MI | 141, 154, 181, 214, 277 |
| abstract_inverted_index.an | 41, 113, 275 |
| abstract_inverted_index.as | 5, 137, 176, 196 |
| abstract_inverted_index.by | 16, 111 |
| abstract_inverted_index.in | 89, 92, 148, 213 |
| abstract_inverted_index.is | 9, 104, 146 |
| abstract_inverted_index.of | 12, 19, 30, 67, 256, 274 |
| abstract_inverted_index.on | 165, 281 |
| abstract_inverted_index.to | 27, 45, 75, 97, 125, 150, 200, 209, 240, 271 |
| abstract_inverted_index.CNN | 191, 230, 244 |
| abstract_inverted_index.PCG | 98, 282 |
| abstract_inverted_index.Six | 156 |
| abstract_inverted_index.The | 224, 251 |
| abstract_inverted_index.Two | 204 |
| abstract_inverted_index.and | 39, 55, 80, 160, 198, 220, 248, 254, 265 |
| abstract_inverted_index.due | 26, 74 |
| abstract_inverted_index.for | 71, 100, 140, 180 |
| abstract_inverted_index.gap | 110 |
| abstract_inverted_index.has | 86 |
| abstract_inverted_index.its | 95 |
| abstract_inverted_index.the | 17, 28, 34, 46, 65, 117, 171, 177, 235, 272 |
| abstract_inverted_index.CNN. | 288 |
| abstract_inverted_index.MIDS | 257 |
| abstract_inverted_index.MIDs | 211, 228 |
| abstract_inverted_index.This | 23, 106, 268 |
| abstract_inverted_index.been | 87 |
| abstract_inverted_index.both | 246 |
| abstract_inverted_index.deep | 84, 127 |
| abstract_inverted_index.flow | 38 |
| abstract_inverted_index.have | 63 |
| abstract_inverted_index.more | 152 |
| abstract_inverted_index.such | 195 |
| abstract_inverted_index.that | 227 |
| abstract_inverted_index.this | 109, 130, 184, 260 |
| abstract_inverted_index.type | 11 |
| abstract_inverted_index.were | 174, 207, 262 |
| abstract_inverted_index.with | 189, 221, 229, 247, 259 |
| abstract_inverted_index.(CNN) | 169 |
| abstract_inverted_index.(ECG) | 54 |
| abstract_inverted_index.(MI), | 2 |
| abstract_inverted_index.(PCG) | 69 |
| abstract_inverted_index.(PPG) | 57 |
| abstract_inverted_index.While | 83 |
| abstract_inverted_index.after | 232 |
| abstract_inverted_index.based | 164, 280 |
| abstract_inverted_index.blood | 31, 37 |
| abstract_inverted_index.body. | 47 |
| abstract_inverted_index.death | 18 |
| abstract_inverted_index.heart | 7, 20, 101 |
| abstract_inverted_index.known | 4 |
| abstract_inverted_index.other | 190, 241 |
| abstract_inverted_index.rare. | 105 |
| abstract_inverted_index.study | 107, 131, 185 |
| abstract_inverted_index.tests | 51 |
| abstract_inverted_index.their | 76, 202 |
| abstract_inverted_index.these | 187 |
| abstract_inverted_index.using | 170, 284 |
| abstract_inverted_index.Neural | 167 |
| abstract_inverted_index.System | 121 |
| abstract_inverted_index.VGG-16 | 172 |
| abstract_inverted_index.VGG-19 | 197 |
| abstract_inverted_index.around | 33 |
| abstract_inverted_index.assess | 201 |
| abstract_inverted_index.attack | 102 |
| abstract_inverted_index.called | 116 |
| abstract_inverted_index.cells. | 22 |
| abstract_inverted_index.heart, | 35 |
| abstract_inverted_index.models | 163, 188 |
| abstract_inverted_index.muscle | 21 |
| abstract_inverted_index.object | 90 |
| abstract_inverted_index.obtain | 151 |
| abstract_inverted_index.occurs | 25 |
| abstract_inverted_index.oxygen | 43 |
| abstract_inverted_index.recent | 60 |
| abstract_inverted_index.supply | 44 |
| abstract_inverted_index.tuning | 219, 233 |
| abstract_inverted_index.years, | 61 |
| abstract_inverted_index.(MIDs). | 122 |
| abstract_inverted_index.Feature | 144 |
| abstract_inverted_index.attack, | 8 |
| abstract_inverted_index.bridges | 108 |
| abstract_inverted_index.causing | 40 |
| abstract_inverted_index.digital | 93 |
| abstract_inverted_index.disease | 14, 50 |
| abstract_inverted_index.employs | 132 |
| abstract_inverted_index.feature | 142, 157 |
| abstract_inverted_index.highest | 236 |
| abstract_inverted_index.images, | 94 |
| abstract_inverted_index.involve | 52 |
| abstract_inverted_index.methods | 159 |
| abstract_inverted_index.models, | 194, 245 |
| abstract_inverted_index.nature. | 82 |
| abstract_inverted_index.primary | 178 |
| abstract_inverted_index.results | 225 |
| abstract_inverted_index.signals | 70, 99, 283 |
| abstract_inverted_index.tuning. | 223, 250 |
| abstract_inverted_index.vessels | 32 |
| abstract_inverted_index.without | 217, 249 |
| abstract_inverted_index.(VGG-16) | 231 |
| abstract_inverted_index.Networks | 168 |
| abstract_inverted_index.accurate | 153 |
| abstract_inverted_index.blockage | 29 |
| abstract_inverted_index.commonly | 3 |
| abstract_inverted_index.compared | 239 |
| abstract_inverted_index.compares | 186 |
| abstract_inverted_index.contrast | 124 |
| abstract_inverted_index.enhanced | 114, 276 |
| abstract_inverted_index.evaluate | 210 |
| abstract_inverted_index.explored | 64 |
| abstract_inverted_index.indicate | 226 |
| abstract_inverted_index.learning | 85, 128, 135, 162, 193, 243, 287 |
| abstract_inverted_index.previous | 126 |
| abstract_inverted_index.research | 269 |
| abstract_inverted_index.segments | 149 |
| abstract_inverted_index.selected | 175 |
| abstract_inverted_index.signals. | 58 |
| abstract_inverted_index.transfer | 134, 161, 192, 242, 286 |
| abstract_inverted_index.Detection | 120 |
| abstract_inverted_index.Xception, | 199 |
| abstract_inverted_index.accuracy, | 252 |
| abstract_inverted_index.algorithm | 136 |
| abstract_inverted_index.condition | 24 |
| abstract_inverted_index.conducted | 208 |
| abstract_inverted_index.datasets. | 143 |
| abstract_inverted_index.detection | 73, 91, 103, 237, 258, 278 |
| abstract_inverted_index.exhibited | 234 |
| abstract_inverted_index.features. | 155 |
| abstract_inverted_index.performed | 147 |
| abstract_inverted_index.research, | 129 |
| abstract_inverted_index.scenarios | 206 |
| abstract_inverted_index.technique | 115, 279 |
| abstract_inverted_index.Infarction | 1, 119 |
| abstract_inverted_index.Myocardial | 0, 118 |
| abstract_inverted_index.Typically, | 48 |
| abstract_inverted_index.classifier | 139 |
| abstract_inverted_index.components | 179 |
| abstract_inverted_index.detection: | 215 |
| abstract_inverted_index.efficient, | 78 |
| abstract_inverted_index.extraction | 145, 158 |
| abstract_inverted_index.inhibiting | 36 |
| abstract_inverted_index.successful | 88 |
| abstract_inverted_index.accessible, | 79 |
| abstract_inverted_index.application | 66, 96 |
| abstract_inverted_index.contributes | 270 |
| abstract_inverted_index.development | 273 |
| abstract_inverted_index.experiments | 216 |
| abstract_inverted_index.introducing | 112 |
| abstract_inverted_index.performance | 212, 238 |
| abstract_inverted_index.researchers | 62 |
| abstract_inverted_index.sensitivity | 255 |
| abstract_inverted_index.architecture | 173 |
| abstract_inverted_index.experimental | 205 |
| abstract_inverted_index.insufficient | 42 |
| abstract_inverted_index.performance. | 203 |
| abstract_inverted_index.specificity, | 253 |
| abstract_inverted_index.96.0%, | 264 |
| abstract_inverted_index.96.7%, | 263 |
| abstract_inverted_index.97.4%, | 266 |
| abstract_inverted_index.Additionally, | 183 |
| abstract_inverted_index.Convolutional | 166 |
| abstract_inverted_index.characterized | 15 |
| abstract_inverted_index.configuration | 261 |
| abstract_inverted_index.non-invasive, | 77 |
| abstract_inverted_index.respectively. | 267 |
| abstract_inverted_index.cardiovascular | 13, 49, 72 |
| abstract_inverted_index.cost-effective | 81 |
| abstract_inverted_index.hyperparameter | 218, 222 |
| abstract_inverted_index.Phonocardiogram | 68 |
| abstract_inverted_index.identification. | 182 |
| abstract_inverted_index.electrocardiogram | 53 |
| abstract_inverted_index.photoplethysmogram | 56 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.97534643 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |