Enhanced OCT chorio-retinal segmentation in low-data settings with semi-supervised GAN augmentation using cross-localisation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.cviu.2023.103852
Training deep learning methods for optical coherence tomography (OCT) retinal and choroidal layer segmentation is a challenge when data is scarce. In medical image analysis, this is often the case with a lack of data sharing due to confidentiality agreements and data privacy concerns which is further exacerbated in cases of rare pathologies. Even where OCT data is readily available, performing the requisite annotations is time consuming, costly, and error-prone. Data augmentation and semi-supervised learning (SSL) are two techniques employed in deep learning to enhance training in these situations. In this study, we extend our previous work proposing an enhanced StyleGAN2-based data augmentation method for OCT images by employing SSL through a novel cross-localisation technique. The technique increases the diversity of the synthetic data by automatically incorporating styles from unlabeled data with those from labelled data. The method can be used to extend StyleGAN2 as the core idea is simple, yet highly performant. In this work, we optimize the method through a set of ablations and propose the use of a targeted task-specific model selection technique for more optimal generator selection, further boosting performance. The method is applied to OCT retinal and choroidal layer segmentation, demonstrating its effectiveness through substantial patch classification performance improvements as well as significant reductions in choroidal layer segmentation error.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cviu.2023.103852
- OA Status
- hybrid
- Cited By
- 3
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387335053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387335053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cviu.2023.103852Digital Object Identifier
- Title
-
Enhanced OCT chorio-retinal segmentation in low-data settings with semi-supervised GAN augmentation using cross-localisationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-04Full publication date if available
- Authors
-
Jason Kugelman, David Alonso‐Caneiro, Scott A. Read, Stephen J. Vincent, Michael J. CollinsList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cviu.2023.103852Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cviu.2023.103852Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Optical coherence tomography, Deep learning, Boosting (machine learning), Pattern recognition (psychology), Semi-supervised learning, Data set, Machine learning, Labeled data, Medicine, OphthalmologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387335053 |
|---|---|
| doi | https://doi.org/10.1016/j.cviu.2023.103852 |
| ids.doi | https://doi.org/10.1016/j.cviu.2023.103852 |
| ids.openalex | https://openalex.org/W4387335053 |
| fwci | 0.9271649 |
| type | article |
| title | Enhanced OCT chorio-retinal segmentation in low-data settings with semi-supervised GAN augmentation using cross-localisation |
| awards[0].id | https://openalex.org/G4557747309 |
| awards[0].funder_id | https://openalex.org/F4320334705 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1186915 |
| awards[0].funder_display_name | National Health and Medical Research Council |
| biblio.issue | |
| biblio.volume | 237 |
| biblio.last_page | 103852 |
| biblio.first_page | 103852 |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9833999872207642 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9767000079154968 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| funders[0].id | https://openalex.org/F4320334705 |
| funders[0].ror | https://ror.org/011kf5r70 |
| funders[0].display_name | National Health and Medical Research Council |
| is_xpac | False |
| apc_list.value | 2370 |
| apc_list.currency | USD |
| apc_list.value_usd | 2370 |
| apc_paid.value | 2370 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2370 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7971245646476746 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7093347907066345 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.65702885389328 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2778818243 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6483721733093262 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q899552 |
| concepts[3].display_name | Optical coherence tomography |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5481297969818115 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C46686674 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4972269833087921 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[5].display_name | Boosting (machine learning) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4876641035079956 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C58973888 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46298494935035706 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1041418 |
| concepts[7].display_name | Semi-supervised learning |
| concepts[8].id | https://openalex.org/C58489278 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4591358006000519 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[8].display_name | Data set |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4175224304199219 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2776145971 |
| concepts[10].level | 2 |
| concepts[10].score | 0.411678284406662 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[10].display_name | Labeled data |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08974418044090271 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C118487528 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[12].display_name | Ophthalmology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7971245646476746 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7093347907066345 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.65702885389328 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/optical-coherence-tomography |
| keywords[3].score | 0.6483721733093262 |
| keywords[3].display_name | Optical coherence tomography |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5481297969818115 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/boosting |
| keywords[5].score | 0.4972269833087921 |
| keywords[5].display_name | Boosting (machine learning) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4876641035079956 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/semi-supervised-learning |
| keywords[7].score | 0.46298494935035706 |
| keywords[7].display_name | Semi-supervised learning |
| keywords[8].id | https://openalex.org/keywords/data-set |
| keywords[8].score | 0.4591358006000519 |
| keywords[8].display_name | Data set |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4175224304199219 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/labeled-data |
| keywords[10].score | 0.411678284406662 |
| keywords[10].display_name | Labeled data |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.08974418044090271 |
| keywords[11].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1016/j.cviu.2023.103852 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S185008460 |
| locations[0].source.issn | 1077-3142, 1090-235X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1077-3142 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computer Vision and Image Understanding |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer Vision and Image Understanding |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cviu.2023.103852 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5022009973 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7269-8573 |
| authorships[0].author.display_name | Jason Kugelman |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[0].affiliations[0].raw_affiliation_string | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I160993911 |
| authorships[0].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Queensland University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jason Kugelman |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[1].author.id | https://openalex.org/A5002372452 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7754-6592 |
| authorships[1].author.display_name | David Alonso‐Caneiro |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[1].affiliations[0].raw_affiliation_string | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I174025329 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Science, Technology, and Engineering, University of Sunshine Coast, Sunshine Coast, QLD, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I160993911 |
| authorships[1].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Queensland University of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I174025329 |
| authorships[1].institutions[1].ror | https://ror.org/016gb9e15 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I174025329 |
| authorships[1].institutions[1].country_code | AU |
| authorships[1].institutions[1].display_name | University of the Sunshine Coast |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David Alonso-Caneiro |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia, School of Science, Technology, and Engineering, University of Sunshine Coast, Sunshine Coast, QLD, Australia |
| authorships[2].author.id | https://openalex.org/A5103220396 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1595-673X |
| authorships[2].author.display_name | Scott A. Read |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[2].affiliations[0].raw_affiliation_string | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I160993911 |
| authorships[2].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Queensland University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Scott A. Read |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[3].author.id | https://openalex.org/A5041138389 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5998-1320 |
| authorships[3].author.display_name | Stephen J. Vincent |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[3].affiliations[0].raw_affiliation_string | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I160993911 |
| authorships[3].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Queensland University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stephen J. Vincent |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[4].author.id | https://openalex.org/A5074839699 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5226-5498 |
| authorships[4].author.display_name | Michael J. Collins |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I160993911 |
| authorships[4].affiliations[0].raw_affiliation_string | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I160993911 |
| authorships[4].institutions[0].ror | https://ror.org/03pnv4752 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I160993911 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Queensland University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Michael J. Collins |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cviu.2023.103852 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced OCT chorio-retinal segmentation in low-data settings with semi-supervised GAN augmentation using cross-localisation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W34092691, https://openalex.org/W132838958, https://openalex.org/W2365028544, https://openalex.org/W2760891738, https://openalex.org/W4309984931, https://openalex.org/W2949671220, https://openalex.org/W4282977123, https://openalex.org/W2074435087, https://openalex.org/W1991049327, https://openalex.org/W2186210338 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.cviu.2023.103852 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S185008460 |
| best_oa_location.source.issn | 1077-3142, 1090-235X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1077-3142 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computer Vision and Image Understanding |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer Vision and Image Understanding |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cviu.2023.103852 |
| primary_location.id | doi:10.1016/j.cviu.2023.103852 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S185008460 |
| primary_location.source.issn | 1077-3142, 1090-235X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1077-3142 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computer Vision and Image Understanding |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer Vision and Image Understanding |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cviu.2023.103852 |
| publication_date | 2023-10-04 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6778225364, https://openalex.org/W3036782889, https://openalex.org/W2998648213, https://openalex.org/W2608854843, https://openalex.org/W2808330913, https://openalex.org/W3035574324, https://openalex.org/W4304808902, https://openalex.org/W2898575988, https://openalex.org/W2973920946, https://openalex.org/W6772262199, https://openalex.org/W6791396613, https://openalex.org/W3135700368, https://openalex.org/W6849976583, https://openalex.org/W2905660188, https://openalex.org/W3035131250, https://openalex.org/W6759690914, https://openalex.org/W4220747310, https://openalex.org/W1900665324, https://openalex.org/W2013436069, https://openalex.org/W2606534623, https://openalex.org/W3163368546, https://openalex.org/W3122440835, https://openalex.org/W2412510955, https://openalex.org/W426634604, https://openalex.org/W3029869524, https://openalex.org/W2963373786, https://openalex.org/W4206612344, https://openalex.org/W2749812777, https://openalex.org/W4298289240, https://openalex.org/W2917403694 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 15, 31, 111, 161, 170 |
| abstract_inverted_index.In | 21, 89, 153 |
| abstract_inverted_index.an | 98 |
| abstract_inverted_index.as | 144, 204, 206 |
| abstract_inverted_index.be | 139 |
| abstract_inverted_index.by | 107, 124 |
| abstract_inverted_index.in | 48, 80, 86, 209 |
| abstract_inverted_index.is | 14, 19, 26, 45, 57, 64, 148, 186 |
| abstract_inverted_index.of | 33, 50, 120, 163, 169 |
| abstract_inverted_index.to | 37, 83, 141, 188 |
| abstract_inverted_index.we | 92, 156 |
| abstract_inverted_index.OCT | 55, 105, 189 |
| abstract_inverted_index.SSL | 109 |
| abstract_inverted_index.The | 115, 136, 184 |
| abstract_inverted_index.and | 10, 40, 68, 72, 165, 191 |
| abstract_inverted_index.are | 76 |
| abstract_inverted_index.can | 138 |
| abstract_inverted_index.due | 36 |
| abstract_inverted_index.for | 4, 104, 176 |
| abstract_inverted_index.its | 196 |
| abstract_inverted_index.our | 94 |
| abstract_inverted_index.set | 162 |
| abstract_inverted_index.the | 28, 61, 118, 121, 145, 158, 167 |
| abstract_inverted_index.two | 77 |
| abstract_inverted_index.use | 168 |
| abstract_inverted_index.yet | 150 |
| abstract_inverted_index.Data | 70 |
| abstract_inverted_index.Even | 53 |
| abstract_inverted_index.case | 29 |
| abstract_inverted_index.core | 146 |
| abstract_inverted_index.data | 18, 34, 41, 56, 101, 123, 130 |
| abstract_inverted_index.deep | 1, 81 |
| abstract_inverted_index.from | 128, 133 |
| abstract_inverted_index.idea | 147 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.more | 177 |
| abstract_inverted_index.rare | 51 |
| abstract_inverted_index.this | 25, 90, 154 |
| abstract_inverted_index.time | 65 |
| abstract_inverted_index.used | 140 |
| abstract_inverted_index.well | 205 |
| abstract_inverted_index.when | 17 |
| abstract_inverted_index.with | 30, 131 |
| abstract_inverted_index.work | 96 |
| abstract_inverted_index.(OCT) | 8 |
| abstract_inverted_index.(SSL) | 75 |
| abstract_inverted_index.cases | 49 |
| abstract_inverted_index.data. | 135 |
| abstract_inverted_index.image | 23 |
| abstract_inverted_index.layer | 12, 193, 211 |
| abstract_inverted_index.model | 173 |
| abstract_inverted_index.novel | 112 |
| abstract_inverted_index.often | 27 |
| abstract_inverted_index.patch | 200 |
| abstract_inverted_index.these | 87 |
| abstract_inverted_index.those | 132 |
| abstract_inverted_index.where | 54 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.work, | 155 |
| abstract_inverted_index.error. | 213 |
| abstract_inverted_index.extend | 93, 142 |
| abstract_inverted_index.highly | 151 |
| abstract_inverted_index.images | 106 |
| abstract_inverted_index.method | 103, 137, 159, 185 |
| abstract_inverted_index.study, | 91 |
| abstract_inverted_index.styles | 127 |
| abstract_inverted_index.applied | 187 |
| abstract_inverted_index.costly, | 67 |
| abstract_inverted_index.enhance | 84 |
| abstract_inverted_index.further | 46, 181 |
| abstract_inverted_index.medical | 22 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.optical | 5 |
| abstract_inverted_index.optimal | 178 |
| abstract_inverted_index.privacy | 42 |
| abstract_inverted_index.propose | 166 |
| abstract_inverted_index.readily | 58 |
| abstract_inverted_index.retinal | 9, 190 |
| abstract_inverted_index.scarce. | 20 |
| abstract_inverted_index.sharing | 35 |
| abstract_inverted_index.simple, | 149 |
| abstract_inverted_index.through | 110, 160, 198 |
| abstract_inverted_index.Training | 0 |
| abstract_inverted_index.boosting | 182 |
| abstract_inverted_index.concerns | 43 |
| abstract_inverted_index.employed | 79 |
| abstract_inverted_index.enhanced | 99 |
| abstract_inverted_index.labelled | 134 |
| abstract_inverted_index.learning | 2, 74, 82 |
| abstract_inverted_index.optimize | 157 |
| abstract_inverted_index.previous | 95 |
| abstract_inverted_index.targeted | 171 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.StyleGAN2 | 143 |
| abstract_inverted_index.ablations | 164 |
| abstract_inverted_index.analysis, | 24 |
| abstract_inverted_index.challenge | 16 |
| abstract_inverted_index.choroidal | 11, 192, 210 |
| abstract_inverted_index.coherence | 6 |
| abstract_inverted_index.diversity | 119 |
| abstract_inverted_index.employing | 108 |
| abstract_inverted_index.generator | 179 |
| abstract_inverted_index.increases | 117 |
| abstract_inverted_index.proposing | 97 |
| abstract_inverted_index.requisite | 62 |
| abstract_inverted_index.selection | 174 |
| abstract_inverted_index.synthetic | 122 |
| abstract_inverted_index.technique | 116, 175 |
| abstract_inverted_index.unlabeled | 129 |
| abstract_inverted_index.agreements | 39 |
| abstract_inverted_index.available, | 59 |
| abstract_inverted_index.consuming, | 66 |
| abstract_inverted_index.performing | 60 |
| abstract_inverted_index.reductions | 208 |
| abstract_inverted_index.selection, | 180 |
| abstract_inverted_index.technique. | 114 |
| abstract_inverted_index.techniques | 78 |
| abstract_inverted_index.tomography | 7 |
| abstract_inverted_index.annotations | 63 |
| abstract_inverted_index.exacerbated | 47 |
| abstract_inverted_index.performance | 202 |
| abstract_inverted_index.performant. | 152 |
| abstract_inverted_index.significant | 207 |
| abstract_inverted_index.situations. | 88 |
| abstract_inverted_index.substantial | 199 |
| abstract_inverted_index.augmentation | 71, 102 |
| abstract_inverted_index.error-prone. | 69 |
| abstract_inverted_index.improvements | 203 |
| abstract_inverted_index.pathologies. | 52 |
| abstract_inverted_index.performance. | 183 |
| abstract_inverted_index.segmentation | 13, 212 |
| abstract_inverted_index.automatically | 125 |
| abstract_inverted_index.demonstrating | 195 |
| abstract_inverted_index.effectiveness | 197 |
| abstract_inverted_index.incorporating | 126 |
| abstract_inverted_index.segmentation, | 194 |
| abstract_inverted_index.task-specific | 172 |
| abstract_inverted_index.classification | 201 |
| abstract_inverted_index.StyleGAN2-based | 100 |
| abstract_inverted_index.confidentiality | 38 |
| abstract_inverted_index.semi-supervised | 73 |
| abstract_inverted_index.cross-localisation | 113 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5022009973 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I160993911 |
| citation_normalized_percentile.value | 0.74481354 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |