Enhanced simulation of gross and net carbon fluxes in a managed Mediterranean forest by the use of multi-sensor data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.srs.2025.100216
The current paper presents the last advancements introduced into a modelling strategy capable of simulating gross and net forest carbon (C) fluxes, i.e. gross and net primary and net ecosystem production (GPP, NPP and NEP, respectively). The simulation is performed by combining the outputs of a NDVI driven model, Modified C-Fix, and a bio-geochemical model, BIOME-BGC, taking into account the effects of forest disturbances. The proposed advancements are aimed at improving the model performance in managed Mediterranean forests and concern: i) the calibration of C-Fix GPP sensitivity to water stress; ii) the quantification of the green, woody and soil C pools which regulate the prediction of NPP and NEP. These two issues are addressed by the processing of additional remotely sensed datasets, i.e. low spatial resolution satellite imagery and high spatial resolution airborne laser scanner data. The original and modified model versions are tested in a Mediterranean pine forest which has been the subject of several investigations and where a new eddy covariance flux tower was installed at the end of 2012. This allows the assessment of the GPP and NEP estimates versus daily tower observations of eleven years (2013–2023), while mean stand NPP estimates are evaluated against measurements of current annual increments (CAI) taken in the pine forest. The results obtained support the capability of the proposed modifications to improve the model accounting for the major environmental factors which regulate the three C fluxes. The calibration of C-Fix, in particular, improves the reproduction of the high mean daily GPP observations consequent on the moderate ecosystem sensitivity to water stress (r2 increases from 0.87 to 0.91, whilst RMSE and MBE decrease from 1.65 to 1.04 and from −1.37 to −0.56 g C m−2 day−1, respectively). The quantification of the forest C pools enables the consideration of stand aging, which is decisive for the correct simulation of the relatively low NPP and NEP observations. The assessment of the final CAI estimates, in fact, yields a high accuracy (r2 = 0.653, RMSE = 1.38 m3 ha−1 y−1 and MBE = 0.42 m3 ha−1 y−1); the case is similar for the mean daily NEP estimates, which accurately reproduce the flux tower observations (r2 = 0.669, RMSE = 0.91 g C m−2 day−1 and MBE = 0.11 g C m−2 day−1).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.srs.2025.100216
- OA Status
- gold
- Cited By
- 2
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408220817
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408220817Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.srs.2025.100216Digital Object Identifier
- Title
-
Enhanced simulation of gross and net carbon fluxes in a managed Mediterranean forest by the use of multi-sensor dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-05Full publication date if available
- Authors
-
Marta Chiesi, Nicola Arriga, Luca Fibbi, Lorenzo Bottai, Luigi Paolo D’Acqui, Antonio Dell’Acqua, Sara Di Lonardo, Lorenzo Gardin, Maurizio Pieri, Fabio MaselliList of authors in order
- Landing page
-
https://doi.org/10.1016/j.srs.2025.100216Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.srs.2025.100216Direct OA link when available
- Concepts
-
Mediterranean climate, Environmental science, Net (polyhedron), Carbon flux, Forestry, Primary production, Geography, Ecology, Mathematics, Ecosystem, Archaeology, Biology, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408220817 |
|---|---|
| doi | https://doi.org/10.1016/j.srs.2025.100216 |
| ids.doi | https://doi.org/10.1016/j.srs.2025.100216 |
| ids.openalex | https://openalex.org/W4408220817 |
| fwci | 6.23654349 |
| type | article |
| title | Enhanced simulation of gross and net carbon fluxes in a managed Mediterranean forest by the use of multi-sensor data |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 100216 |
| biblio.first_page | 100216 |
| topics[0].id | https://openalex.org/T10266 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Plant Water Relations and Carbon Dynamics |
| topics[1].id | https://openalex.org/T11880 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2309 |
| topics[1].subfield.display_name | Nature and Landscape Conservation |
| topics[1].display_name | Forest ecology and management |
| topics[2].id | https://openalex.org/T11796 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9961000084877014 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Horticultural and Viticultural Research |
| is_xpac | False |
| apc_list.value | 1750 |
| apc_list.currency | USD |
| apc_list.value_usd | 1750 |
| apc_paid.value | 1750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1750 |
| concepts[0].id | https://openalex.org/C4646841 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6558487415313721 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13996 |
| concepts[0].display_name | Mediterranean climate |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5647090077400208 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C14166107 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5310825705528259 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[2].display_name | Net (polyhedron) |
| concepts[3].id | https://openalex.org/C2993678126 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4759259521961212 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q167751 |
| concepts[3].display_name | Carbon flux |
| concepts[4].id | https://openalex.org/C97137747 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44667714834213257 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[4].display_name | Forestry |
| concepts[5].id | https://openalex.org/C24717449 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44364914298057556 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q515905 |
| concepts[5].display_name | Primary production |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3085724711418152 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16952615976333618 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.15857413411140442 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C110872660 |
| concepts[9].level | 2 |
| concepts[9].score | 0.08890259265899658 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[9].display_name | Ecosystem |
| concepts[10].id | https://openalex.org/C166957645 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08134183287620544 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[10].display_name | Archaeology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0648648738861084 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/mediterranean-climate |
| keywords[0].score | 0.6558487415313721 |
| keywords[0].display_name | Mediterranean climate |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.5647090077400208 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/net |
| keywords[2].score | 0.5310825705528259 |
| keywords[2].display_name | Net (polyhedron) |
| keywords[3].id | https://openalex.org/keywords/carbon-flux |
| keywords[3].score | 0.4759259521961212 |
| keywords[3].display_name | Carbon flux |
| keywords[4].id | https://openalex.org/keywords/forestry |
| keywords[4].score | 0.44667714834213257 |
| keywords[4].display_name | Forestry |
| keywords[5].id | https://openalex.org/keywords/primary-production |
| keywords[5].score | 0.44364914298057556 |
| keywords[5].display_name | Primary production |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.3085724711418152 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.16952615976333618 |
| keywords[7].display_name | Ecology |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.15857413411140442 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/ecosystem |
| keywords[9].score | 0.08890259265899658 |
| keywords[9].display_name | Ecosystem |
| keywords[10].id | https://openalex.org/keywords/archaeology |
| keywords[10].score | 0.08134183287620544 |
| keywords[10].display_name | Archaeology |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.0648648738861084 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1016/j.srs.2025.100216 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210173871 |
| locations[0].source.issn | 2666-0172 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-0172 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Science of Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Science of Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.srs.2025.100216 |
| locations[1].id | pmh:oai:doaj.org/article:f6b227fd0f7741ad981cc787f31a6f21 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Science of Remote Sensing, Vol 11, Iss , Pp 100216- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/f6b227fd0f7741ad981cc787f31a6f21 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5091326139 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3459-6693 |
| authorships[0].author.display_name | Marta Chiesi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marta Chiesi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078332618 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5321-3497 |
| authorships[1].author.display_name | Nicola Arriga |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nicola Arriga |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044972007 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6985-6809 |
| authorships[2].author.display_name | Luca Fibbi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luca Fibbi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5040693836 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1409-2244 |
| authorships[3].author.display_name | Lorenzo Bottai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lorenzo Bottai |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035243255 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2387-2488 |
| authorships[4].author.display_name | Luigi Paolo D’Acqui |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Luigi D’Acqui |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102806123 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8279-0776 |
| authorships[5].author.display_name | Antonio Dell’Acqua |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Alessandro Dell’Acqua |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5036974260 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6251-4328 |
| authorships[6].author.display_name | Sara Di Lonardo |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sara Di Lonardo |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5078329928 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2702-8148 |
| authorships[7].author.display_name | Lorenzo Gardin |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lorenzo Gardin |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5061492744 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0930-8346 |
| authorships[8].author.display_name | Maurizio Pieri |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Maurizio Pieri |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5009056194 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6475-4600 |
| authorships[9].author.display_name | Fabio Maselli |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Fabio Maselli |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.srs.2025.100216 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced simulation of gross and net carbon fluxes in a managed Mediterranean forest by the use of multi-sensor data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10266 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Plant Water Relations and Carbon Dynamics |
| related_works | https://openalex.org/W2371500623, https://openalex.org/W2967972856, https://openalex.org/W3120535729, https://openalex.org/W4312944157, https://openalex.org/W4206393367, https://openalex.org/W3150307218, https://openalex.org/W2289035310, https://openalex.org/W1545508541, https://openalex.org/W2054903955, https://openalex.org/W4239341561 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.srs.2025.100216 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210173871 |
| best_oa_location.source.issn | 2666-0172 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-0172 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Science of Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Science of Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.srs.2025.100216 |
| primary_location.id | doi:10.1016/j.srs.2025.100216 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210173871 |
| primary_location.source.issn | 2666-0172 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-0172 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Science of Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Science of Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.srs.2025.100216 |
| publication_date | 2025-03-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1566053318, https://openalex.org/W2610686360, https://openalex.org/W2128288508, https://openalex.org/W2622417512, https://openalex.org/W1986790048, https://openalex.org/W3018099097, https://openalex.org/W6668800745, https://openalex.org/W2102939650, https://openalex.org/W4390668948, https://openalex.org/W2326135681, https://openalex.org/W4213298283, https://openalex.org/W2933891308, https://openalex.org/W4393716562, https://openalex.org/W2009591362, https://openalex.org/W3081387814, https://openalex.org/W4385307566, https://openalex.org/W2972475990, https://openalex.org/W2083707159, https://openalex.org/W3196488837, https://openalex.org/W2058615460, https://openalex.org/W2037198049, https://openalex.org/W2753999756, https://openalex.org/W6810359040, https://openalex.org/W3004377517, https://openalex.org/W2893686901, https://openalex.org/W2123095840, https://openalex.org/W2088812394, https://openalex.org/W2073533231, https://openalex.org/W2053709476, https://openalex.org/W2032730321, https://openalex.org/W2045562342, https://openalex.org/W2146550099, https://openalex.org/W6752163446, https://openalex.org/W2627030664, https://openalex.org/W4391731162, https://openalex.org/W3040739689, https://openalex.org/W4285395428, https://openalex.org/W2124437404, https://openalex.org/W3088507381, https://openalex.org/W2147423506, https://openalex.org/W2904061031, https://openalex.org/W2048100734, https://openalex.org/W1978320582, https://openalex.org/W2135685863, https://openalex.org/W4226033442, https://openalex.org/W1981122766, https://openalex.org/W2015345826, https://openalex.org/W2976863702, https://openalex.org/W2180426220, https://openalex.org/W2806709398, https://openalex.org/W2074113313, https://openalex.org/W2009365308, https://openalex.org/W4224904008 |
| referenced_works_count | 53 |
| abstract_inverted_index.= | 327, 330, 337, 360, 363, 371 |
| abstract_inverted_index.C | 99, 233, 281, 290, 366, 374 |
| abstract_inverted_index.a | 9, 45, 52, 145, 159, 323 |
| abstract_inverted_index.g | 280, 365, 373 |
| abstract_inverted_index.at | 69, 167 |
| abstract_inverted_index.by | 40, 114 |
| abstract_inverted_index.i) | 80 |
| abstract_inverted_index.in | 74, 144, 205, 239, 320 |
| abstract_inverted_index.is | 38, 299, 344 |
| abstract_inverted_index.m3 | 332, 339 |
| abstract_inverted_index.of | 13, 44, 61, 83, 93, 105, 117, 154, 170, 176, 186, 199, 215, 237, 244, 287, 295, 305, 315 |
| abstract_inverted_index.on | 252 |
| abstract_inverted_index.to | 87, 219, 257, 264, 273, 278 |
| abstract_inverted_index.(C) | 20 |
| abstract_inverted_index.(r2 | 260, 326, 359 |
| abstract_inverted_index.CAI | 318 |
| abstract_inverted_index.GPP | 85, 178, 249 |
| abstract_inverted_index.MBE | 269, 336, 370 |
| abstract_inverted_index.NEP | 180, 311, 350 |
| abstract_inverted_index.NPP | 32, 106, 193, 309 |
| abstract_inverted_index.The | 0, 36, 64, 136, 209, 235, 285, 313 |
| abstract_inverted_index.and | 16, 24, 27, 33, 51, 78, 97, 107, 128, 138, 157, 179, 268, 275, 310, 335, 369 |
| abstract_inverted_index.are | 67, 112, 142, 195 |
| abstract_inverted_index.end | 169 |
| abstract_inverted_index.for | 224, 301, 346 |
| abstract_inverted_index.has | 150 |
| abstract_inverted_index.ii) | 90 |
| abstract_inverted_index.low | 123, 308 |
| abstract_inverted_index.net | 17, 25, 28 |
| abstract_inverted_index.new | 160 |
| abstract_inverted_index.the | 4, 42, 59, 71, 81, 91, 94, 103, 115, 152, 168, 174, 177, 206, 213, 216, 221, 225, 231, 242, 245, 253, 288, 293, 302, 306, 316, 342, 347, 355 |
| abstract_inverted_index.two | 110 |
| abstract_inverted_index.was | 165 |
| abstract_inverted_index.0.11 | 372 |
| abstract_inverted_index.0.42 | 338 |
| abstract_inverted_index.0.87 | 263 |
| abstract_inverted_index.0.91 | 364 |
| abstract_inverted_index.1.04 | 274 |
| abstract_inverted_index.1.38 | 331 |
| abstract_inverted_index.1.65 | 272 |
| abstract_inverted_index.NDVI | 46 |
| abstract_inverted_index.NEP, | 34 |
| abstract_inverted_index.NEP. | 108 |
| abstract_inverted_index.RMSE | 267, 329, 362 |
| abstract_inverted_index.This | 172 |
| abstract_inverted_index.been | 151 |
| abstract_inverted_index.case | 343 |
| abstract_inverted_index.eddy | 161 |
| abstract_inverted_index.flux | 163, 356 |
| abstract_inverted_index.from | 262, 271, 276 |
| abstract_inverted_index.high | 129, 246, 324 |
| abstract_inverted_index.i.e. | 22, 122 |
| abstract_inverted_index.into | 8, 57 |
| abstract_inverted_index.last | 5 |
| abstract_inverted_index.mean | 191, 247, 348 |
| abstract_inverted_index.pine | 147, 207 |
| abstract_inverted_index.soil | 98 |
| abstract_inverted_index.(CAI) | 203 |
| abstract_inverted_index.(GPP, | 31 |
| abstract_inverted_index.0.91, | 265 |
| abstract_inverted_index.2012. | 171 |
| abstract_inverted_index.C-Fix | 84 |
| abstract_inverted_index.These | 109 |
| abstract_inverted_index.aimed | 68 |
| abstract_inverted_index.daily | 183, 248, 349 |
| abstract_inverted_index.data. | 135 |
| abstract_inverted_index.fact, | 321 |
| abstract_inverted_index.final | 317 |
| abstract_inverted_index.gross | 15, 23 |
| abstract_inverted_index.laser | 133 |
| abstract_inverted_index.major | 226 |
| abstract_inverted_index.model | 72, 140, 222 |
| abstract_inverted_index.m−2 | 282, 367, 375 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.pools | 100, 291 |
| abstract_inverted_index.stand | 192, 296 |
| abstract_inverted_index.taken | 204 |
| abstract_inverted_index.three | 232 |
| abstract_inverted_index.tower | 164, 184, 357 |
| abstract_inverted_index.water | 88, 258 |
| abstract_inverted_index.where | 158 |
| abstract_inverted_index.which | 101, 149, 229, 298, 352 |
| abstract_inverted_index.while | 190 |
| abstract_inverted_index.woody | 96 |
| abstract_inverted_index.years | 188 |
| abstract_inverted_index.y−1 | 334 |
| abstract_inverted_index.0.653, | 328 |
| abstract_inverted_index.0.669, | 361 |
| abstract_inverted_index.C-Fix, | 50, 238 |
| abstract_inverted_index.aging, | 297 |
| abstract_inverted_index.allows | 173 |
| abstract_inverted_index.annual | 201 |
| abstract_inverted_index.carbon | 19 |
| abstract_inverted_index.driven | 47 |
| abstract_inverted_index.eleven | 187 |
| abstract_inverted_index.forest | 18, 62, 148, 289 |
| abstract_inverted_index.green, | 95 |
| abstract_inverted_index.ha−1 | 333, 340 |
| abstract_inverted_index.issues | 111 |
| abstract_inverted_index.model, | 48, 54 |
| abstract_inverted_index.sensed | 120 |
| abstract_inverted_index.stress | 259 |
| abstract_inverted_index.taking | 56 |
| abstract_inverted_index.tested | 143 |
| abstract_inverted_index.versus | 182 |
| abstract_inverted_index.whilst | 266 |
| abstract_inverted_index.yields | 322 |
| abstract_inverted_index.account | 58 |
| abstract_inverted_index.against | 197 |
| abstract_inverted_index.capable | 12 |
| abstract_inverted_index.correct | 303 |
| abstract_inverted_index.current | 1, 200 |
| abstract_inverted_index.day−1 | 368 |
| abstract_inverted_index.effects | 60 |
| abstract_inverted_index.enables | 292 |
| abstract_inverted_index.factors | 228 |
| abstract_inverted_index.fluxes, | 21 |
| abstract_inverted_index.fluxes. | 234 |
| abstract_inverted_index.forest. | 208 |
| abstract_inverted_index.forests | 77 |
| abstract_inverted_index.imagery | 127 |
| abstract_inverted_index.improve | 220 |
| abstract_inverted_index.managed | 75 |
| abstract_inverted_index.outputs | 43 |
| abstract_inverted_index.primary | 26 |
| abstract_inverted_index.results | 210 |
| abstract_inverted_index.scanner | 134 |
| abstract_inverted_index.several | 155 |
| abstract_inverted_index.similar | 345 |
| abstract_inverted_index.spatial | 124, 130 |
| abstract_inverted_index.stress; | 89 |
| abstract_inverted_index.subject | 153 |
| abstract_inverted_index.support | 212 |
| abstract_inverted_index.y−1); | 341 |
| abstract_inverted_index.−0.56 | 279 |
| abstract_inverted_index.−1.37 | 277 |
| abstract_inverted_index.Modified | 49 |
| abstract_inverted_index.accuracy | 325 |
| abstract_inverted_index.airborne | 132 |
| abstract_inverted_index.concern: | 79 |
| abstract_inverted_index.day−1, | 283 |
| abstract_inverted_index.decisive | 300 |
| abstract_inverted_index.decrease | 270 |
| abstract_inverted_index.improves | 241 |
| abstract_inverted_index.moderate | 254 |
| abstract_inverted_index.modified | 139 |
| abstract_inverted_index.obtained | 211 |
| abstract_inverted_index.original | 137 |
| abstract_inverted_index.presents | 3 |
| abstract_inverted_index.proposed | 65, 217 |
| abstract_inverted_index.regulate | 102, 230 |
| abstract_inverted_index.remotely | 119 |
| abstract_inverted_index.strategy | 11 |
| abstract_inverted_index.versions | 141 |
| abstract_inverted_index.addressed | 113 |
| abstract_inverted_index.combining | 41 |
| abstract_inverted_index.datasets, | 121 |
| abstract_inverted_index.day−1). | 376 |
| abstract_inverted_index.ecosystem | 29, 255 |
| abstract_inverted_index.estimates | 181, 194 |
| abstract_inverted_index.evaluated | 196 |
| abstract_inverted_index.improving | 70 |
| abstract_inverted_index.increases | 261 |
| abstract_inverted_index.installed | 166 |
| abstract_inverted_index.modelling | 10 |
| abstract_inverted_index.performed | 39 |
| abstract_inverted_index.reproduce | 354 |
| abstract_inverted_index.satellite | 126 |
| abstract_inverted_index.BIOME-BGC, | 55 |
| abstract_inverted_index.accounting | 223 |
| abstract_inverted_index.accurately | 353 |
| abstract_inverted_index.additional | 118 |
| abstract_inverted_index.assessment | 175, 314 |
| abstract_inverted_index.capability | 214 |
| abstract_inverted_index.consequent | 251 |
| abstract_inverted_index.covariance | 162 |
| abstract_inverted_index.estimates, | 319, 351 |
| abstract_inverted_index.increments | 202 |
| abstract_inverted_index.introduced | 7 |
| abstract_inverted_index.prediction | 104 |
| abstract_inverted_index.processing | 116 |
| abstract_inverted_index.production | 30 |
| abstract_inverted_index.relatively | 307 |
| abstract_inverted_index.resolution | 125, 131 |
| abstract_inverted_index.simulating | 14 |
| abstract_inverted_index.simulation | 37, 304 |
| abstract_inverted_index.calibration | 82, 236 |
| abstract_inverted_index.particular, | 240 |
| abstract_inverted_index.performance | 73 |
| abstract_inverted_index.sensitivity | 86, 256 |
| abstract_inverted_index.advancements | 6, 66 |
| abstract_inverted_index.measurements | 198 |
| abstract_inverted_index.observations | 185, 250, 358 |
| abstract_inverted_index.reproduction | 243 |
| abstract_inverted_index.Mediterranean | 76, 146 |
| abstract_inverted_index.consideration | 294 |
| abstract_inverted_index.disturbances. | 63 |
| abstract_inverted_index.environmental | 227 |
| abstract_inverted_index.modifications | 218 |
| abstract_inverted_index.observations. | 312 |
| abstract_inverted_index.(2013–2023), | 189 |
| abstract_inverted_index.investigations | 156 |
| abstract_inverted_index.quantification | 92, 286 |
| abstract_inverted_index.respectively). | 35, 284 |
| abstract_inverted_index.bio-geochemical | 53 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.90268721 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |