Enhanced Super-Resolution Using GAN Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.22214/ijraset.2022.42718
Super-resolution reconstruction is an increasingly important area in computer vision. To eliminate the problems that super-resolution reconstruction models based on generative adversarial networks are difficult to train and contain artifacts in reconstruction results. besides the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks. However, the hallucinated details are often accompanied with unpleasant artifacts. This paper presented ESRGAN model which was also based on generative adversarial networks. To further enhance the visual quality, we thoroughly study three key components of SRGAN – network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.22214/ijraset.2022.42718
- https://doi.org/10.22214/ijraset.2022.42718
- OA Status
- diamond
- Cited By
- 2
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281825402
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281825402Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22214/ijraset.2022.42718Digital Object Identifier
- Title
-
Enhanced Super-Resolution Using GANWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-27Full publication date if available
- Authors
-
Chandan Kumar, Amzad Choudhary, Gurpreet Singh, Ms. Deepti GuptaList of authors in order
- Landing page
-
https://doi.org/10.22214/ijraset.2022.42718Publisher landing page
- PDF URL
-
https://doi.org/10.22214/ijraset.2022.42718Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.22214/ijraset.2022.42718Direct OA link when available
- Concepts
-
Hallucinating, Discriminator, Computer science, Residual, Normalization (sociology), Artificial intelligence, Block (permutation group theory), Convolutional neural network, Adversarial system, Generative grammar, Computer vision, Algorithm, Mathematics, Geometry, Telecommunications, Detector, Anthropology, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281825402 |
|---|---|
| doi | https://doi.org/10.22214/ijraset.2022.42718 |
| ids.doi | https://doi.org/10.22214/ijraset.2022.42718 |
| ids.openalex | https://openalex.org/W4281825402 |
| fwci | 0.2475836 |
| type | article |
| title | Enhanced Super-Resolution Using GAN |
| biblio.issue | 5 |
| biblio.volume | 10 |
| biblio.last_page | 2080 |
| biblio.first_page | 2077 |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2911011789 |
| concepts[0].level | 2 |
| concepts[0].score | 0.868016242980957 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q130741 |
| concepts[0].display_name | Hallucinating |
| concepts[1].id | https://openalex.org/C2779803651 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8102187514305115 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[1].display_name | Discriminator |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7784161567687988 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C155512373 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6388700008392334 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[3].display_name | Residual |
| concepts[4].id | https://openalex.org/C136886441 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6160341501235962 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[4].display_name | Normalization (sociology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5919893383979797 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2777210771 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5696567296981812 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[6].display_name | Block (permutation group theory) |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4674191474914551 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C37736160 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43739914894104004 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[8].display_name | Adversarial system |
| concepts[9].id | https://openalex.org/C39890363 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4304870367050171 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[9].display_name | Generative grammar |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4145481586456299 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3340747356414795 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1042991578578949 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C94915269 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[15].display_name | Detector |
| concepts[16].id | https://openalex.org/C19165224 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[16].display_name | Anthropology |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/hallucinating |
| keywords[0].score | 0.868016242980957 |
| keywords[0].display_name | Hallucinating |
| keywords[1].id | https://openalex.org/keywords/discriminator |
| keywords[1].score | 0.8102187514305115 |
| keywords[1].display_name | Discriminator |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7784161567687988 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/residual |
| keywords[3].score | 0.6388700008392334 |
| keywords[3].display_name | Residual |
| keywords[4].id | https://openalex.org/keywords/normalization |
| keywords[4].score | 0.6160341501235962 |
| keywords[4].display_name | Normalization (sociology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5919893383979797 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/block |
| keywords[6].score | 0.5696567296981812 |
| keywords[6].display_name | Block (permutation group theory) |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.4674191474914551 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/adversarial-system |
| keywords[8].score | 0.43739914894104004 |
| keywords[8].display_name | Adversarial system |
| keywords[9].id | https://openalex.org/keywords/generative-grammar |
| keywords[9].score | 0.4304870367050171 |
| keywords[9].display_name | Generative grammar |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.4145481586456299 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3340747356414795 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.1042991578578949 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.22214/ijraset.2022.42718 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764566388 |
| locations[0].source.issn | 2321-9653 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2321-9653 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| locations[0].source.host_organization | https://openalex.org/P4322614460 |
| locations[0].source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322614460 |
| locations[0].source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.22214/ijraset.2022.42718 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| locations[0].landing_page_url | http://doi.org/10.22214/ijraset.2022.42718 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5023086403 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9485-2375 |
| authorships[0].author.display_name | Chandan Kumar |
| authorships[0].affiliations[0].raw_affiliation_string | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chandan Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[1].author.id | https://openalex.org/A5044762381 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Amzad Choudhary |
| authorships[1].affiliations[0].raw_affiliation_string | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amzad Choudhary |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[2].author.id | https://openalex.org/A5018302833 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3696-965X |
| authorships[2].author.display_name | Gurpreet Singh |
| authorships[2].affiliations[0].raw_affiliation_string | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gurpreet Singh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[3].author.id | https://openalex.org/A5087856384 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ms. Deepti Gupta |
| authorships[3].affiliations[0].raw_affiliation_string | Maharaja Agrasen Institute of Technology, New Delhi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ms. Deepti Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Maharaja Agrasen Institute of Technology, New Delhi |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.22214/ijraset.2022.42718 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Super-Resolution Using GAN |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W3005996785, https://openalex.org/W2785678896, https://openalex.org/W2965098853, https://openalex.org/W2963836885, https://openalex.org/W2412510955, https://openalex.org/W3119931323, https://openalex.org/W2893345206, https://openalex.org/W2564929713, https://openalex.org/W4367556412, https://openalex.org/W4301431435 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22214/ijraset.2022.42718 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764566388 |
| best_oa_location.source.issn | 2321-9653 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2321-9653 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4322614460 |
| best_oa_location.source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322614460 |
| best_oa_location.source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.22214/ijraset.2022.42718 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| best_oa_location.landing_page_url | http://doi.org/10.22214/ijraset.2022.42718 |
| primary_location.id | doi:10.22214/ijraset.2022.42718 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764566388 |
| primary_location.source.issn | 2321-9653 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2321-9653 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| primary_location.source.host_organization | https://openalex.org/P4322614460 |
| primary_location.source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322614460 |
| primary_location.source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.22214/ijraset.2022.42718 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| primary_location.landing_page_url | http://doi.org/10.22214/ijraset.2022.42718 |
| publication_date | 2022-05-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2741137940, https://openalex.org/W1953465585, https://openalex.org/W2963864522, https://openalex.org/W1885185971, https://openalex.org/W2964193438, https://openalex.org/W4377561911, https://openalex.org/W54257720, https://openalex.org/W2768814045, https://openalex.org/W4394670483, https://openalex.org/W2964060609 |
| referenced_works_count | 10 |
| abstract_inverted_index.In | 108 |
| abstract_inverted_index.To | 11, 75 |
| abstract_inverted_index.an | 4, 104 |
| abstract_inverted_index.as | 120 |
| abstract_inverted_index.by | 152 |
| abstract_inverted_index.in | 8, 31, 37 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 41, 87, 100, 142 |
| abstract_inverted_index.on | 20, 71 |
| abstract_inverted_index.to | 26, 102, 134 |
| abstract_inverted_index.we | 81, 110, 127, 147 |
| abstract_inverted_index.GAN | 133 |
| abstract_inverted_index.and | 28, 39, 47, 94, 97, 166, 184 |
| abstract_inverted_index.are | 24, 56 |
| abstract_inverted_index.for | 163 |
| abstract_inverted_index.key | 85 |
| abstract_inverted_index.let | 135 |
| abstract_inverted_index.the | 13, 35, 53, 78, 112, 121, 129, 136, 143, 149, 154, 173 |
| abstract_inverted_index.was | 68 |
| abstract_inverted_index.– | 89 |
| abstract_inverted_index.This | 62 |
| abstract_inverted_index.also | 69 |
| abstract_inverted_index.area | 7 |
| abstract_inverted_index.each | 99 |
| abstract_inverted_index.from | 131, 170 |
| abstract_inverted_index.idea | 130 |
| abstract_inverted_index.loss | 93, 151 |
| abstract_inverted_index.more | 182 |
| abstract_inverted_index.than | 187 |
| abstract_inverted_index.that | 15 |
| abstract_inverted_index.them | 101 |
| abstract_inverted_index.with | 59, 181 |
| abstract_inverted_index.Block | 115 |
| abstract_inverted_index.Dense | 114 |
| abstract_inverted_index.SRGAN | 88, 106 |
| abstract_inverted_index.based | 19, 70 |
| abstract_inverted_index.basic | 122 |
| abstract_inverted_index.batch | 118 |
| abstract_inverted_index.could | 159 |
| abstract_inverted_index.image | 43 |
| abstract_inverted_index.loss, | 96 |
| abstract_inverted_index.model | 66 |
| abstract_inverted_index.often | 57 |
| abstract_inverted_index.paper | 63 |
| abstract_inverted_index.speed | 40 |
| abstract_inverted_index.study | 83 |
| abstract_inverted_index.these | 171 |
| abstract_inverted_index.three | 84 |
| abstract_inverted_index.train | 27 |
| abstract_inverted_index.unit. | 125 |
| abstract_inverted_index.using | 45, 153 |
| abstract_inverted_index.which | 67, 158 |
| abstract_inverted_index.(RRDB) | 116 |
| abstract_inverted_index.ESRGAN | 65, 175 |
| abstract_inverted_index.SRGAN. | 188 |
| abstract_inverted_index.before | 156 |
| abstract_inverted_index.better | 178 |
| abstract_inverted_index.borrow | 128 |
| abstract_inverted_index.deeper | 48 |
| abstract_inverted_index.derive | 103 |
| abstract_inverted_index.faster | 46 |
| abstract_inverted_index.models | 18 |
| abstract_inverted_index.neural | 50 |
| abstract_inverted_index.single | 42 |
| abstract_inverted_index.value. | 145 |
| abstract_inverted_index.visual | 79, 179 |
| abstract_inverted_index.besides | 34 |
| abstract_inverted_index.contain | 29 |
| abstract_inverted_index.details | 55 |
| abstract_inverted_index.enhance | 77 |
| abstract_inverted_index.further | 76 |
| abstract_inverted_index.improve | 98, 148 |
| abstract_inverted_index.instead | 141 |
| abstract_inverted_index.natural | 185 |
| abstract_inverted_index.network | 90, 123 |
| abstract_inverted_index.predict | 138 |
| abstract_inverted_index.provide | 160 |
| abstract_inverted_index.quality | 180 |
| abstract_inverted_index.texture | 167 |
| abstract_inverted_index.vision. | 10 |
| abstract_inverted_index.without | 117 |
| abstract_inverted_index.Enhanced | 105 |
| abstract_inverted_index.Finally, | 146 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.absolute | 144 |
| abstract_inverted_index.accuracy | 38 |
| abstract_inverted_index.achieves | 176 |
| abstract_inverted_index.building | 124 |
| abstract_inverted_index.computer | 9 |
| abstract_inverted_index.features | 155 |
| abstract_inverted_index.networks | 23 |
| abstract_inverted_index.problems | 14 |
| abstract_inverted_index.proposed | 174 |
| abstract_inverted_index.quality, | 80 |
| abstract_inverted_index.realness | 140 |
| abstract_inverted_index.relative | 139 |
| abstract_inverted_index.results. | 33 |
| abstract_inverted_index.stronger | 161 |
| abstract_inverted_index.textures | 186 |
| abstract_inverted_index.(ESRGAN). | 107 |
| abstract_inverted_index.Abstract: | 0 |
| abstract_inverted_index.Moreover, | 126 |
| abstract_inverted_index.artifacts | 30 |
| abstract_inverted_index.difficult | 25 |
| abstract_inverted_index.eliminate | 12 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.introduce | 111 |
| abstract_inverted_index.networks. | 51, 74 |
| abstract_inverted_index.presented | 64 |
| abstract_inverted_index.realistic | 183 |
| abstract_inverted_index.recovery. | 168 |
| abstract_inverted_index.Benefiting | 169 |
| abstract_inverted_index.artifacts. | 61 |
| abstract_inverted_index.brightness | 164 |
| abstract_inverted_index.components | 86 |
| abstract_inverted_index.generative | 21, 72 |
| abstract_inverted_index.perceptual | 95, 150 |
| abstract_inverted_index.thoroughly | 82 |
| abstract_inverted_index.unpleasant | 60 |
| abstract_inverted_index.accompanied | 58 |
| abstract_inverted_index.activation, | 157 |
| abstract_inverted_index.adversarial | 22, 73, 92 |
| abstract_inverted_index.consistency | 165 |
| abstract_inverted_index.particular, | 109 |
| abstract_inverted_index.supervision | 162 |
| abstract_inverted_index.consistently | 177 |
| abstract_inverted_index.hallucinated | 54 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.relativistic | 132 |
| abstract_inverted_index.architecture, | 91 |
| abstract_inverted_index.breakthroughs | 36 |
| abstract_inverted_index.convolutional | 49 |
| abstract_inverted_index.discriminator | 137 |
| abstract_inverted_index.improvements, | 172 |
| abstract_inverted_index.normalization | 119 |
| abstract_inverted_index.reconstruction | 2, 17, 32 |
| abstract_inverted_index.Super-resolution | 1 |
| abstract_inverted_index.super-resolution | 16, 44 |
| abstract_inverted_index.Residual-in-Residual | 113 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.48357671 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |