Enhanced Variable Selection for Boosting Sparser and Less Complex Models in Distributional Copula Regression Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s12561-025-09491-8
Structured additive distributional copula regression allows to model the joint distribution of multivariate outcomes by relating all distribution parameters to covariates. Estimation via statistical boosting enables accounting for high-dimensional data and incorporating data-driven variable selection, both of which are useful given the complexity of the model class. However, as known from univariate (distributional) regression, the standard boosting algorithm tends to select too many variables with minor importance, particularly in settings with large sample sizes, leading to complex models with difficult interpretation. To counteract this behavior and to avoid selecting base-learners with only a negligible impact, we combine the ideas of probing, stability selection, and a new deselection approach with statistical boosting for distributional copula regression. In simulations and an application to the joint modeling of weight and length of newborns, we find that all proposed methods enhance variable selection by reducing the number of false positives. However, only stability selection and the deselection approach yield similar predictive performance to classical boosting. Finally, the deselection approach is better scalable to larger datasets and leads to competitive predictive performance, which we further illustrate in a genomic cohort study from the UK Biobank by modeling the joint genetic predisposition for two phenotypes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s12561-025-09491-8
- https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411372172
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411372172Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s12561-025-09491-8Digital Object Identifier
- Title
-
Enhanced Variable Selection for Boosting Sparser and Less Complex Models in Distributional Copula RegressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-17Full publication date if available
- Authors
-
Annika Strömer, Nadja Klein, Christian Staerk, Florian Faschingbauer, Hannah Klinkhammer, Andreas MayrList of authors in order
- Landing page
-
https://doi.org/10.1007/s12561-025-09491-8Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdfDirect OA link when available
- Concepts
-
Copula (linguistics), Feature selection, Biostatistics, Econometrics, Boosting (machine learning), Regression, Statistics, Model selection, Computer science, Mathematics, Artificial intelligence, Public health, Nursing, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411372172 |
|---|---|
| doi | https://doi.org/10.1007/s12561-025-09491-8 |
| ids.doi | https://doi.org/10.1007/s12561-025-09491-8 |
| ids.openalex | https://openalex.org/W4411372172 |
| fwci | 7.28767097 |
| type | article |
| title | Enhanced Variable Selection for Boosting Sparser and Less Complex Models in Distributional Copula Regression |
| awards[0].id | https://openalex.org/G4667929563 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | 428239776 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9959999918937683 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T11901 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9919000267982483 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Methods and Mixture Models |
| topics[2].id | https://openalex.org/T10282 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Financial Risk and Volatility Modeling |
| funders[0].id | https://openalex.org/F4320310905 |
| funders[0].ror | https://ror.org/01rdrb571 |
| funders[0].display_name | Philipps-Universität Marburg |
| funders[1].id | https://openalex.org/F4320320879 |
| funders[1].ror | https://ror.org/018mejw64 |
| funders[1].display_name | Deutsche Forschungsgemeinschaft |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C17618745 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7277602553367615 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q207509 |
| concepts[0].display_name | Copula (linguistics) |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.634422779083252 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C140556311 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5724034905433655 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q214746 |
| concepts[2].display_name | Biostatistics |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5618086457252502 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C46686674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5180473327636719 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[4].display_name | Boosting (machine learning) |
| concepts[5].id | https://openalex.org/C83546350 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43853628635406494 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[5].display_name | Regression |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42716801166534424 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C93959086 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41618943214416504 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[7].display_name | Model selection |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4151621162891388 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3517778515815735 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3222845196723938 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C138816342 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189603 |
| concepts[11].display_name | Public health |
| concepts[12].id | https://openalex.org/C159110408 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[12].display_name | Nursing |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/copula |
| keywords[0].score | 0.7277602553367615 |
| keywords[0].display_name | Copula (linguistics) |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.634422779083252 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/biostatistics |
| keywords[2].score | 0.5724034905433655 |
| keywords[2].display_name | Biostatistics |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.5618086457252502 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/boosting |
| keywords[4].score | 0.5180473327636719 |
| keywords[4].display_name | Boosting (machine learning) |
| keywords[5].id | https://openalex.org/keywords/regression |
| keywords[5].score | 0.43853628635406494 |
| keywords[5].display_name | Regression |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.42716801166534424 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/model-selection |
| keywords[7].score | 0.41618943214416504 |
| keywords[7].display_name | Model selection |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4151621162891388 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3517778515815735 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3222845196723938 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1007/s12561-025-09491-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S89613883 |
| locations[0].source.issn | 1867-1764, 1867-1772 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1867-1764 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistics in Biosciences |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistics in Biosciences |
| locations[0].landing_page_url | https://doi.org/10.1007/s12561-025-09491-8 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016578580 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1284-3318 |
| authorships[0].author.display_name | Annika Strömer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Annika Strömer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009563869 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5072-5347 |
| authorships[1].author.display_name | Nadja Klein |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nadja Klein |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067210732 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0526-0189 |
| authorships[2].author.display_name | Christian Staerk |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christian Staerk |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010909333 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Florian Faschingbauer |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Florian Faschingbauer |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5021345672 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3752-1275 |
| authorships[4].author.display_name | Hannah Klinkhammer |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hannah Klinkhammer |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5085125500 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7106-9732 |
| authorships[5].author.display_name | Andreas Mayr |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Andreas Mayr |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhanced Variable Selection for Boosting Sparser and Less Complex Models in Distributional Copula Regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9959999918937683 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W1977389139, https://openalex.org/W4380903871, https://openalex.org/W1563497214, https://openalex.org/W163469799, https://openalex.org/W2078010321, https://openalex.org/W4385816498, https://openalex.org/W2120608270, https://openalex.org/W4366326307, https://openalex.org/W3097888895, https://openalex.org/W2145188897 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s12561-025-09491-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S89613883 |
| best_oa_location.source.issn | 1867-1764, 1867-1772 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1867-1764 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Statistics in Biosciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Statistics in Biosciences |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s12561-025-09491-8 |
| primary_location.id | doi:10.1007/s12561-025-09491-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S89613883 |
| primary_location.source.issn | 1867-1764, 1867-1772 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1867-1764 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistics in Biosciences |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s12561-025-09491-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistics in Biosciences |
| primary_location.landing_page_url | https://doi.org/10.1007/s12561-025-09491-8 |
| publication_date | 2025-06-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2099085143, https://openalex.org/W4229930971, https://openalex.org/W2470793588, https://openalex.org/W2070534370, https://openalex.org/W1984925443, https://openalex.org/W4316038540, https://openalex.org/W4297253723, https://openalex.org/W4402738932, https://openalex.org/W1933386641, https://openalex.org/W2071721660, https://openalex.org/W4389609623, https://openalex.org/W4387607109, https://openalex.org/W2114199337, https://openalex.org/W4315472677, https://openalex.org/W4392241969, https://openalex.org/W4292334794, https://openalex.org/W347231809, https://openalex.org/W2054633259, https://openalex.org/W4385986303, https://openalex.org/W2562162676, https://openalex.org/W4387234276, https://openalex.org/W2794694102, https://openalex.org/W2154065358, https://openalex.org/W1992549534, https://openalex.org/W2116815574, https://openalex.org/W3121239749, https://openalex.org/W3201557900, https://openalex.org/W4387305174, https://openalex.org/W4200425331, https://openalex.org/W4327811512, https://openalex.org/W2082704080, https://openalex.org/W2588369015, https://openalex.org/W2612340775, https://openalex.org/W4387821469, https://openalex.org/W2593046461, https://openalex.org/W4392235219, https://openalex.org/W1967312649, https://openalex.org/W2051483504, https://openalex.org/W4206338651 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 93, 105, 183 |
| abstract_inverted_index.In | 116 |
| abstract_inverted_index.To | 82 |
| abstract_inverted_index.UK | 189 |
| abstract_inverted_index.an | 119 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.by | 15, 140, 191 |
| abstract_inverted_index.in | 69, 182 |
| abstract_inverted_index.is | 166 |
| abstract_inverted_index.of | 12, 37, 44, 100, 125, 129, 144 |
| abstract_inverted_index.to | 7, 20, 60, 76, 87, 121, 159, 169, 174 |
| abstract_inverted_index.we | 96, 131, 179 |
| abstract_inverted_index.all | 17, 134 |
| abstract_inverted_index.and | 31, 86, 104, 118, 127, 151, 172 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.for | 28, 112, 197 |
| abstract_inverted_index.new | 106 |
| abstract_inverted_index.the | 9, 42, 45, 55, 98, 122, 142, 152, 163, 188, 193 |
| abstract_inverted_index.too | 62 |
| abstract_inverted_index.two | 198 |
| abstract_inverted_index.via | 23 |
| abstract_inverted_index.both | 36 |
| abstract_inverted_index.data | 30 |
| abstract_inverted_index.find | 132 |
| abstract_inverted_index.from | 51, 187 |
| abstract_inverted_index.many | 63 |
| abstract_inverted_index.only | 92, 148 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.with | 65, 71, 79, 91, 109 |
| abstract_inverted_index.avoid | 88 |
| abstract_inverted_index.false | 145 |
| abstract_inverted_index.given | 41 |
| abstract_inverted_index.ideas | 99 |
| abstract_inverted_index.joint | 10, 123, 194 |
| abstract_inverted_index.known | 50 |
| abstract_inverted_index.large | 72 |
| abstract_inverted_index.leads | 173 |
| abstract_inverted_index.minor | 66 |
| abstract_inverted_index.model | 8, 46 |
| abstract_inverted_index.study | 186 |
| abstract_inverted_index.tends | 59 |
| abstract_inverted_index.which | 38, 178 |
| abstract_inverted_index.yield | 155 |
| abstract_inverted_index.allows | 6 |
| abstract_inverted_index.better | 167 |
| abstract_inverted_index.class. | 47 |
| abstract_inverted_index.cohort | 185 |
| abstract_inverted_index.copula | 4, 114 |
| abstract_inverted_index.larger | 170 |
| abstract_inverted_index.length | 128 |
| abstract_inverted_index.models | 78 |
| abstract_inverted_index.number | 143 |
| abstract_inverted_index.sample | 73 |
| abstract_inverted_index.select | 61 |
| abstract_inverted_index.sizes, | 74 |
| abstract_inverted_index.useful | 40 |
| abstract_inverted_index.weight | 126 |
| abstract_inverted_index.Biobank | 190 |
| abstract_inverted_index.combine | 97 |
| abstract_inverted_index.complex | 77 |
| abstract_inverted_index.enables | 26 |
| abstract_inverted_index.enhance | 137 |
| abstract_inverted_index.further | 180 |
| abstract_inverted_index.genetic | 195 |
| abstract_inverted_index.genomic | 184 |
| abstract_inverted_index.impact, | 95 |
| abstract_inverted_index.leading | 75 |
| abstract_inverted_index.methods | 136 |
| abstract_inverted_index.similar | 156 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 162 |
| abstract_inverted_index.However, | 48, 147 |
| abstract_inverted_index.additive | 2 |
| abstract_inverted_index.approach | 108, 154, 165 |
| abstract_inverted_index.behavior | 85 |
| abstract_inverted_index.boosting | 25, 57, 111 |
| abstract_inverted_index.datasets | 171 |
| abstract_inverted_index.modeling | 124, 192 |
| abstract_inverted_index.outcomes | 14 |
| abstract_inverted_index.probing, | 101 |
| abstract_inverted_index.proposed | 135 |
| abstract_inverted_index.reducing | 141 |
| abstract_inverted_index.relating | 16 |
| abstract_inverted_index.scalable | 168 |
| abstract_inverted_index.settings | 70 |
| abstract_inverted_index.standard | 56 |
| abstract_inverted_index.variable | 34, 138 |
| abstract_inverted_index.algorithm | 58 |
| abstract_inverted_index.boosting. | 161 |
| abstract_inverted_index.classical | 160 |
| abstract_inverted_index.difficult | 80 |
| abstract_inverted_index.newborns, | 130 |
| abstract_inverted_index.selecting | 89 |
| abstract_inverted_index.selection | 139, 150 |
| abstract_inverted_index.stability | 102, 149 |
| abstract_inverted_index.variables | 64 |
| abstract_inverted_index.Estimation | 22 |
| abstract_inverted_index.Structured | 1 |
| abstract_inverted_index.accounting | 27 |
| abstract_inverted_index.complexity | 43 |
| abstract_inverted_index.counteract | 83 |
| abstract_inverted_index.illustrate | 181 |
| abstract_inverted_index.negligible | 94 |
| abstract_inverted_index.parameters | 19 |
| abstract_inverted_index.positives. | 146 |
| abstract_inverted_index.predictive | 157, 176 |
| abstract_inverted_index.regression | 5 |
| abstract_inverted_index.selection, | 35, 103 |
| abstract_inverted_index.univariate | 52 |
| abstract_inverted_index.application | 120 |
| abstract_inverted_index.competitive | 175 |
| abstract_inverted_index.covariates. | 21 |
| abstract_inverted_index.data-driven | 33 |
| abstract_inverted_index.deselection | 107, 153, 164 |
| abstract_inverted_index.importance, | 67 |
| abstract_inverted_index.performance | 158 |
| abstract_inverted_index.phenotypes. | 199 |
| abstract_inverted_index.regression, | 54 |
| abstract_inverted_index.regression. | 115 |
| abstract_inverted_index.simulations | 117 |
| abstract_inverted_index.statistical | 24, 110 |
| abstract_inverted_index.distribution | 11, 18 |
| abstract_inverted_index.multivariate | 13 |
| abstract_inverted_index.particularly | 68 |
| abstract_inverted_index.performance, | 177 |
| abstract_inverted_index.base-learners | 90 |
| abstract_inverted_index.incorporating | 32 |
| abstract_inverted_index.distributional | 3, 113 |
| abstract_inverted_index.predisposition | 196 |
| abstract_inverted_index.interpretation. | 81 |
| abstract_inverted_index.(distributional) | 53 |
| abstract_inverted_index.high-dimensional | 29 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.92585204 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |