Enhancing Automated Software Traceability by Transfer Learning from Open-World Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.01084
Software requirements traceability is a critical component of the software engineering process, enabling activities such as requirements validation, compliance verification, and safety assurance. However, the cost and effort of manually creating a complete set of trace links across natural language artifacts such as requirements, design, and test-cases can be prohibitively expensive. Researchers have therefore proposed automated link-generation solutions primarily based on information-retrieval (IR) techniques; however, these solutions have failed to deliver the accuracy needed for full adoption in industrial projects. Improvements can be achieved using deep-learning traceability models; however, their efficacy is impeded by the limited size and availability of project-level artifacts and links to serve as training data. In this paper, we address this problem by proposing and evaluating several deep-learning approaches for text-to-text traceability. Our method, named NLTrace, explores three transfer learning strategies that use datasets mined from open world platforms. Through pretraining Language Models (LMs) and leveraging adjacent tracing tasks, we demonstrate that NLTrace can significantly improve the performance of LM based trace models when training links are available. In such scenarios NLTrace outperforms the best performing classical IR method with an 188% improvement in F2 score and 94.01% in Mean Average Precision (MAP). It also outperforms the general LM based trace model by 7% and 23% for F2 and MAP respectively. In addition, NLTrace can adapt to low-resource tracing scenarios where other LM models can not. The knowledge learned from adjacent tasks enables NLTrace to outperform VSM models by 28% F2 on generation challenges when presented with a small number of training examples.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.01084
- https://arxiv.org/pdf/2207.01084
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283832896
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283832896Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.01084Digital Object Identifier
- Title
-
Enhancing Automated Software Traceability by Transfer Learning from Open-World DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-03Full publication date if available
- Authors
-
Jinfeng Lin, Amrit Poudel, Wenhao Yu, Qingkai Zeng, Meng Jiang, Jane Cleland‐HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.01084Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.01084Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.01084Direct OA link when available
- Concepts
-
Traceability, Computer science, TRACE (psycholinguistics), Tracing, Process (computing), Software, Transfer of learning, Component (thermodynamics), Software engineering, Deep learning, Artificial intelligence, Machine learning, Data mining, Programming language, Linguistics, Physics, Philosophy, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283832896 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.01084 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.01084 |
| ids.openalex | https://openalex.org/W4283832896 |
| fwci | |
| type | preprint |
| title | Enhancing Automated Software Traceability by Transfer Learning from Open-World Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10260 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Software Engineering Research |
| topics[1].id | https://openalex.org/T10430 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Techniques and Practices |
| topics[2].id | https://openalex.org/T12423 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9908000230789185 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1712 |
| topics[2].subfield.display_name | Software |
| topics[2].display_name | Software Reliability and Analysis Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153876917 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8686777353286743 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899704 |
| concepts[0].display_name | Traceability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8281762599945068 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C75291252 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7357384562492371 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1315756 |
| concepts[2].display_name | TRACE (psycholinguistics) |
| concepts[3].id | https://openalex.org/C138673069 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6818800568580627 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q322229 |
| concepts[3].display_name | Tracing |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5452916026115417 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C2777904410 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4852044880390167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[5].display_name | Software |
| concepts[6].id | https://openalex.org/C150899416 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4700314700603485 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[6].display_name | Transfer of learning |
| concepts[7].id | https://openalex.org/C168167062 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4665873646736145 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[7].display_name | Component (thermodynamics) |
| concepts[8].id | https://openalex.org/C115903868 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45848438143730164 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[8].display_name | Software engineering |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45781412720680237 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44844043254852295 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4315292239189148 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.39822566509246826 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1242307722568512 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C97355855 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[17].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/traceability |
| keywords[0].score | 0.8686777353286743 |
| keywords[0].display_name | Traceability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8281762599945068 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/trace |
| keywords[2].score | 0.7357384562492371 |
| keywords[2].display_name | TRACE (psycholinguistics) |
| keywords[3].id | https://openalex.org/keywords/tracing |
| keywords[3].score | 0.6818800568580627 |
| keywords[3].display_name | Tracing |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.5452916026115417 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/software |
| keywords[5].score | 0.4852044880390167 |
| keywords[5].display_name | Software |
| keywords[6].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[6].score | 0.4700314700603485 |
| keywords[6].display_name | Transfer of learning |
| keywords[7].id | https://openalex.org/keywords/component |
| keywords[7].score | 0.4665873646736145 |
| keywords[7].display_name | Component (thermodynamics) |
| keywords[8].id | https://openalex.org/keywords/software-engineering |
| keywords[8].score | 0.45848438143730164 |
| keywords[8].display_name | Software engineering |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.45781412720680237 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.44844043254852295 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.4315292239189148 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.39822566509246826 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.1242307722568512 |
| keywords[13].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.01084 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.01084 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.01084 |
| locations[1].id | doi:10.48550/arxiv.2207.01084 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.01084 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035410437 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6057-6007 |
| authorships[0].author.display_name | Jinfeng Lin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lin, Jinfeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042294364 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4979-3702 |
| authorships[1].author.display_name | Amrit Poudel |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Poudel, Amrit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114860703 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9671-8652 |
| authorships[2].author.display_name | Wenhao Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Wenhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5030469532 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0610-1553 |
| authorships[3].author.display_name | Qingkai Zeng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zeng, Qingkai |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100670646 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0509-8927 |
| authorships[4].author.display_name | Meng Jiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jiang, Meng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5037363688 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9436-5606 |
| authorships[5].author.display_name | Jane Cleland‐Huang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Cleland-Huang, Jane |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.01084 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-07T00:00:00 |
| display_name | Enhancing Automated Software Traceability by Transfer Learning from Open-World Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10260 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Software Engineering Research |
| related_works | https://openalex.org/W2115308562, https://openalex.org/W2789571330, https://openalex.org/W4299652732, https://openalex.org/W2963744171, https://openalex.org/W2133304975, https://openalex.org/W2362901774, https://openalex.org/W4248091533, https://openalex.org/W4206357785, https://openalex.org/W4281381188, https://openalex.org/W1504419871 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.01084 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.01084 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.01084 |
| primary_location.id | pmh:oai:arXiv.org:2207.01084 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.01084 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.01084 |
| publication_date | 2022-07-03 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 31, 251 |
| abstract_inverted_index.7% | 207 |
| abstract_inverted_index.F2 | 188, 211, 244 |
| abstract_inverted_index.IR | 181 |
| abstract_inverted_index.In | 109, 172, 215 |
| abstract_inverted_index.It | 197 |
| abstract_inverted_index.LM | 163, 202, 226 |
| abstract_inverted_index.an | 184 |
| abstract_inverted_index.as | 15, 42, 106 |
| abstract_inverted_index.be | 48, 82 |
| abstract_inverted_index.by | 93, 116, 206, 242 |
| abstract_inverted_index.in | 77, 187, 192 |
| abstract_inverted_index.is | 3, 91 |
| abstract_inverted_index.of | 7, 28, 34, 99, 162, 254 |
| abstract_inverted_index.on | 60, 245 |
| abstract_inverted_index.to | 69, 104, 220, 238 |
| abstract_inverted_index.we | 112, 153 |
| abstract_inverted_index.23% | 209 |
| abstract_inverted_index.28% | 243 |
| abstract_inverted_index.MAP | 213 |
| abstract_inverted_index.Our | 126 |
| abstract_inverted_index.The | 230 |
| abstract_inverted_index.VSM | 240 |
| abstract_inverted_index.and | 20, 26, 45, 97, 102, 118, 148, 190, 208, 212 |
| abstract_inverted_index.are | 170 |
| abstract_inverted_index.can | 47, 81, 157, 218, 228 |
| abstract_inverted_index.for | 74, 123, 210 |
| abstract_inverted_index.set | 33 |
| abstract_inverted_index.the | 8, 24, 71, 94, 160, 177, 200 |
| abstract_inverted_index.use | 136 |
| abstract_inverted_index.(IR) | 62 |
| abstract_inverted_index.188% | 185 |
| abstract_inverted_index.Mean | 193 |
| abstract_inverted_index.also | 198 |
| abstract_inverted_index.best | 178 |
| abstract_inverted_index.cost | 25 |
| abstract_inverted_index.from | 139, 233 |
| abstract_inverted_index.full | 75 |
| abstract_inverted_index.have | 52, 67 |
| abstract_inverted_index.not. | 229 |
| abstract_inverted_index.open | 140 |
| abstract_inverted_index.size | 96 |
| abstract_inverted_index.such | 14, 41, 173 |
| abstract_inverted_index.that | 135, 155 |
| abstract_inverted_index.this | 110, 114 |
| abstract_inverted_index.when | 167, 248 |
| abstract_inverted_index.with | 183, 250 |
| abstract_inverted_index.(LMs) | 147 |
| abstract_inverted_index.adapt | 219 |
| abstract_inverted_index.based | 59, 164, 203 |
| abstract_inverted_index.data. | 108 |
| abstract_inverted_index.links | 36, 103, 169 |
| abstract_inverted_index.mined | 138 |
| abstract_inverted_index.model | 205 |
| abstract_inverted_index.named | 128 |
| abstract_inverted_index.other | 225 |
| abstract_inverted_index.score | 189 |
| abstract_inverted_index.serve | 105 |
| abstract_inverted_index.small | 252 |
| abstract_inverted_index.tasks | 235 |
| abstract_inverted_index.their | 89 |
| abstract_inverted_index.these | 65 |
| abstract_inverted_index.three | 131 |
| abstract_inverted_index.trace | 35, 165, 204 |
| abstract_inverted_index.using | 84 |
| abstract_inverted_index.where | 224 |
| abstract_inverted_index.world | 141 |
| abstract_inverted_index.(MAP). | 196 |
| abstract_inverted_index.94.01% | 191 |
| abstract_inverted_index.Models | 146 |
| abstract_inverted_index.across | 37 |
| abstract_inverted_index.effort | 27 |
| abstract_inverted_index.failed | 68 |
| abstract_inverted_index.method | 182 |
| abstract_inverted_index.models | 166, 227, 241 |
| abstract_inverted_index.needed | 73 |
| abstract_inverted_index.number | 253 |
| abstract_inverted_index.paper, | 111 |
| abstract_inverted_index.safety | 21 |
| abstract_inverted_index.tasks, | 152 |
| abstract_inverted_index.Average | 194 |
| abstract_inverted_index.NLTrace | 156, 175, 217, 237 |
| abstract_inverted_index.Through | 143 |
| abstract_inverted_index.address | 113 |
| abstract_inverted_index.deliver | 70 |
| abstract_inverted_index.design, | 44 |
| abstract_inverted_index.enables | 236 |
| abstract_inverted_index.general | 201 |
| abstract_inverted_index.impeded | 92 |
| abstract_inverted_index.improve | 159 |
| abstract_inverted_index.learned | 232 |
| abstract_inverted_index.limited | 95 |
| abstract_inverted_index.method, | 127 |
| abstract_inverted_index.models; | 87 |
| abstract_inverted_index.natural | 38 |
| abstract_inverted_index.problem | 115 |
| abstract_inverted_index.several | 120 |
| abstract_inverted_index.tracing | 151, 222 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.Language | 145 |
| abstract_inverted_index.NLTrace, | 129 |
| abstract_inverted_index.Software | 0 |
| abstract_inverted_index.accuracy | 72 |
| abstract_inverted_index.achieved | 83 |
| abstract_inverted_index.adjacent | 150, 234 |
| abstract_inverted_index.adoption | 76 |
| abstract_inverted_index.complete | 32 |
| abstract_inverted_index.creating | 30 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.datasets | 137 |
| abstract_inverted_index.efficacy | 90 |
| abstract_inverted_index.enabling | 12 |
| abstract_inverted_index.explores | 130 |
| abstract_inverted_index.however, | 64, 88 |
| abstract_inverted_index.language | 39 |
| abstract_inverted_index.learning | 133 |
| abstract_inverted_index.manually | 29 |
| abstract_inverted_index.process, | 11 |
| abstract_inverted_index.proposed | 54 |
| abstract_inverted_index.software | 9 |
| abstract_inverted_index.training | 107, 168, 255 |
| abstract_inverted_index.transfer | 132 |
| abstract_inverted_index.Precision | 195 |
| abstract_inverted_index.addition, | 216 |
| abstract_inverted_index.artifacts | 40, 101 |
| abstract_inverted_index.automated | 55 |
| abstract_inverted_index.classical | 180 |
| abstract_inverted_index.component | 6 |
| abstract_inverted_index.examples. | 256 |
| abstract_inverted_index.knowledge | 231 |
| abstract_inverted_index.presented | 249 |
| abstract_inverted_index.primarily | 58 |
| abstract_inverted_index.projects. | 79 |
| abstract_inverted_index.proposing | 117 |
| abstract_inverted_index.scenarios | 174, 223 |
| abstract_inverted_index.solutions | 57, 66 |
| abstract_inverted_index.therefore | 53 |
| abstract_inverted_index.activities | 13 |
| abstract_inverted_index.approaches | 122 |
| abstract_inverted_index.assurance. | 22 |
| abstract_inverted_index.available. | 171 |
| abstract_inverted_index.challenges | 247 |
| abstract_inverted_index.compliance | 18 |
| abstract_inverted_index.evaluating | 119 |
| abstract_inverted_index.expensive. | 50 |
| abstract_inverted_index.generation | 246 |
| abstract_inverted_index.industrial | 78 |
| abstract_inverted_index.leveraging | 149 |
| abstract_inverted_index.outperform | 239 |
| abstract_inverted_index.performing | 179 |
| abstract_inverted_index.platforms. | 142 |
| abstract_inverted_index.strategies | 134 |
| abstract_inverted_index.test-cases | 46 |
| abstract_inverted_index.Researchers | 51 |
| abstract_inverted_index.demonstrate | 154 |
| abstract_inverted_index.engineering | 10 |
| abstract_inverted_index.improvement | 186 |
| abstract_inverted_index.outperforms | 176, 199 |
| abstract_inverted_index.performance | 161 |
| abstract_inverted_index.pretraining | 144 |
| abstract_inverted_index.techniques; | 63 |
| abstract_inverted_index.validation, | 17 |
| abstract_inverted_index.Improvements | 80 |
| abstract_inverted_index.availability | 98 |
| abstract_inverted_index.low-resource | 221 |
| abstract_inverted_index.requirements | 1, 16 |
| abstract_inverted_index.text-to-text | 124 |
| abstract_inverted_index.traceability | 2, 86 |
| abstract_inverted_index.deep-learning | 85, 121 |
| abstract_inverted_index.prohibitively | 49 |
| abstract_inverted_index.project-level | 100 |
| abstract_inverted_index.requirements, | 43 |
| abstract_inverted_index.respectively. | 214 |
| abstract_inverted_index.significantly | 158 |
| abstract_inverted_index.traceability. | 125 |
| abstract_inverted_index.verification, | 19 |
| abstract_inverted_index.link-generation | 56 |
| abstract_inverted_index.information-retrieval | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |