Enhancing Biomedical Question Answering with Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/info15080494
In the field of Information Retrieval, biomedical question answering is a specialized task that focuses on answering questions related to medical and healthcare domains. The goal is to provide accurate and relevant answers to the posed queries related to medical conditions, treatments, procedures, medications, and other healthcare-related topics. Well-designed models should efficiently retrieve relevant passages. Early retrieval models can quickly retrieve passages but often with low precision. In contrast, recently developed Large Language Models can retrieve documents with high precision but at a slower pace. To tackle this issue, we propose a two-stage retrieval approach that initially utilizes BM25 for a preliminary search to identify potential candidate documents; subsequently, a Large Language Model is fine-tuned to evaluate the relevance of query–document pairs. Experimental results indicate that our approach achieves comparative performances on the BioASQ and the TREC-COVID datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/info15080494
- OA Status
- gold
- Cited By
- 7
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401696935
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401696935Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/info15080494Digital Object Identifier
- Title
-
Enhancing Biomedical Question Answering with Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-19Full publication date if available
- Authors
-
Hua Yang, Shilong Li, Teresa GonçalvesList of authors in order
- Landing page
-
https://doi.org/10.3390/info15080494Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/info15080494Direct OA link when available
- Concepts
-
Computer science, Question answering, Relevance (law), Information retrieval, Pace, Language model, Field (mathematics), Task (project management), Query expansion, Artificial intelligence, Natural language processing, Pure mathematics, Economics, Geography, Law, Mathematics, Geodesy, Management, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401696935 |
|---|---|
| doi | https://doi.org/10.3390/info15080494 |
| ids.doi | https://doi.org/10.3390/info15080494 |
| ids.openalex | https://openalex.org/W4401696935 |
| fwci | 4.47144984 |
| type | article |
| title | Enhancing Biomedical Question Answering with Large Language Models |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | 494 |
| biblio.first_page | 494 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11710 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Biomedical Text Mining and Ontologies |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9904000163078308 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.847679853439331 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C44291984 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8049702048301697 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[1].display_name | Question answering |
| concepts[2].id | https://openalex.org/C158154518 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7017776966094971 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[2].display_name | Relevance (law) |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6971365213394165 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| concepts[4].id | https://openalex.org/C2777526511 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6192100048065186 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q691543 |
| concepts[4].display_name | Pace |
| concepts[5].id | https://openalex.org/C137293760 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6135246753692627 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[5].display_name | Language model |
| concepts[6].id | https://openalex.org/C9652623 |
| concepts[6].level | 2 |
| concepts[6].score | 0.561037003993988 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[6].display_name | Field (mathematics) |
| concepts[7].id | https://openalex.org/C2780451532 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5406297445297241 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[7].display_name | Task (project management) |
| concepts[8].id | https://openalex.org/C99016210 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44184964895248413 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5488129 |
| concepts[8].display_name | Query expansion |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3375719487667084 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3230486214160919 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C202444582 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[11].display_name | Pure mathematics |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C199539241 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[14].display_name | Law |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| concepts[17].id | https://openalex.org/C187736073 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[17].display_name | Management |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.847679853439331 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/question-answering |
| keywords[1].score | 0.8049702048301697 |
| keywords[1].display_name | Question answering |
| keywords[2].id | https://openalex.org/keywords/relevance |
| keywords[2].score | 0.7017776966094971 |
| keywords[2].display_name | Relevance (law) |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.6971365213394165 |
| keywords[3].display_name | Information retrieval |
| keywords[4].id | https://openalex.org/keywords/pace |
| keywords[4].score | 0.6192100048065186 |
| keywords[4].display_name | Pace |
| keywords[5].id | https://openalex.org/keywords/language-model |
| keywords[5].score | 0.6135246753692627 |
| keywords[5].display_name | Language model |
| keywords[6].id | https://openalex.org/keywords/field |
| keywords[6].score | 0.561037003993988 |
| keywords[6].display_name | Field (mathematics) |
| keywords[7].id | https://openalex.org/keywords/task |
| keywords[7].score | 0.5406297445297241 |
| keywords[7].display_name | Task (project management) |
| keywords[8].id | https://openalex.org/keywords/query-expansion |
| keywords[8].score | 0.44184964895248413 |
| keywords[8].display_name | Query expansion |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3375719487667084 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.3230486214160919 |
| keywords[10].display_name | Natural language processing |
| language | en |
| locations[0].id | doi:10.3390/info15080494 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219776 |
| locations[0].source.issn | 2078-2489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2078-2489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information |
| locations[0].landing_page_url | https://doi.org/10.3390/info15080494 |
| locations[1].id | pmh:oai:doaj.org/article:c67f4a75f41e422588f5bff83fffa332 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Information, Vol 15, Iss 8, p 494 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/c67f4a75f41e422588f5bff83fffa332 |
| locations[2].id | pmh:oai:mdpi.com:/2078-2489/15/8/494/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Information |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/info15080494 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5075065160 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6720-4831 |
| authorships[0].author.display_name | Hua Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I132586189 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[0].institutions[0].id | https://openalex.org/I132586189 |
| authorships[0].institutions[0].ror | https://ror.org/0360zcg91 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I132586189 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhongyuan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hua Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[1].author.id | https://openalex.org/A5114429783 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-1751-0449 |
| authorships[1].author.display_name | Shilong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I132586189 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I132586189 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Computer Science, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[1].institutions[0].id | https://openalex.org/I132586189 |
| authorships[1].institutions[0].ror | https://ror.org/0360zcg91 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I132586189 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhongyuan University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shilong Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China, School of Computer Science, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[2].author.id | https://openalex.org/A5085523573 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1323-0249 |
| authorships[2].author.display_name | Teresa Gonçalves |
| authorships[2].countries | PT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21803372 |
| authorships[2].affiliations[0].raw_affiliation_string | VISTA Lab, Algoritmi Center, University of Évora, 7000-671 Évora, Portugal |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I21803372 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Évora, 7000-671 Évora, Portugal |
| authorships[2].institutions[0].id | https://openalex.org/I21803372 |
| authorships[2].institutions[0].ror | https://ror.org/02gyps716 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21803372 |
| authorships[2].institutions[0].country_code | PT |
| authorships[2].institutions[0].display_name | University of Évora |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Teresa Gonçalves |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Évora, 7000-671 Évora, Portugal, VISTA Lab, Algoritmi Center, University of Évora, 7000-671 Évora, Portugal |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/info15080494 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Biomedical Question Answering with Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2386723501, https://openalex.org/W2387879414, https://openalex.org/W2390304029, https://openalex.org/W2354923724, https://openalex.org/W2146830340, https://openalex.org/W2377101853, https://openalex.org/W4288267738, https://openalex.org/W2964413124, https://openalex.org/W4388937922, https://openalex.org/W3113264705 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/info15080494 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219776 |
| best_oa_location.source.issn | 2078-2489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2078-2489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/info15080494 |
| primary_location.id | doi:10.3390/info15080494 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219776 |
| primary_location.source.issn | 2078-2489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2078-2489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information |
| primary_location.landing_page_url | https://doi.org/10.3390/info15080494 |
| publication_date | 2024-08-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2740258984, https://openalex.org/W2510976782, https://openalex.org/W6746285233, https://openalex.org/W1561536714, https://openalex.org/W155523208, https://openalex.org/W6753247694, https://openalex.org/W2795319782, https://openalex.org/W2001812656, https://openalex.org/W173870552, https://openalex.org/W2394935951, https://openalex.org/W2539940768, https://openalex.org/W2963748441, https://openalex.org/W2963963993, https://openalex.org/W2404428026, https://openalex.org/W4323349240, https://openalex.org/W2886993012, https://openalex.org/W2759699778, https://openalex.org/W4252076394, https://openalex.org/W2014415866, https://openalex.org/W3099700870, https://openalex.org/W2065240770, https://openalex.org/W2152784831, https://openalex.org/W3034212969, https://openalex.org/W2536015822, https://openalex.org/W4226208814, https://openalex.org/W1981208470, https://openalex.org/W3128581554, https://openalex.org/W6633728942, https://openalex.org/W2159065781, https://openalex.org/W2087227067, https://openalex.org/W1994863898, https://openalex.org/W2149427297, https://openalex.org/W4226391416, https://openalex.org/W4385570359, https://openalex.org/W2093390569, https://openalex.org/W1973289172, https://openalex.org/W3154755316, https://openalex.org/W3206770993, https://openalex.org/W3172119680, https://openalex.org/W2136189984, https://openalex.org/W6685160515, https://openalex.org/W2132784310, https://openalex.org/W6776225533, https://openalex.org/W3180230246, https://openalex.org/W2970641574, https://openalex.org/W4389523765, https://openalex.org/W6809646742, https://openalex.org/W4402671832, https://openalex.org/W4385573358, https://openalex.org/W4389524586, https://openalex.org/W2951359136, https://openalex.org/W2883547972, https://openalex.org/W4221143046, https://openalex.org/W1563486531 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 10, 82, 91, 100, 109 |
| abstract_inverted_index.In | 0, 67 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.at | 81 |
| abstract_inverted_index.is | 9, 26, 113 |
| abstract_inverted_index.of | 3, 119 |
| abstract_inverted_index.on | 15, 131 |
| abstract_inverted_index.to | 19, 27, 33, 38, 103, 115 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 21, 30, 44, 134 |
| abstract_inverted_index.but | 62, 80 |
| abstract_inverted_index.can | 58, 74 |
| abstract_inverted_index.for | 99 |
| abstract_inverted_index.low | 65 |
| abstract_inverted_index.our | 126 |
| abstract_inverted_index.the | 1, 34, 117, 132, 135 |
| abstract_inverted_index.BM25 | 98 |
| abstract_inverted_index.goal | 25 |
| abstract_inverted_index.high | 78 |
| abstract_inverted_index.task | 12 |
| abstract_inverted_index.that | 13, 95, 125 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.with | 64, 77 |
| abstract_inverted_index.Early | 55 |
| abstract_inverted_index.Large | 71, 110 |
| abstract_inverted_index.Model | 112 |
| abstract_inverted_index.field | 2 |
| abstract_inverted_index.often | 63 |
| abstract_inverted_index.other | 45 |
| abstract_inverted_index.pace. | 84 |
| abstract_inverted_index.posed | 35 |
| abstract_inverted_index.BioASQ | 133 |
| abstract_inverted_index.Models | 73 |
| abstract_inverted_index.issue, | 88 |
| abstract_inverted_index.models | 49, 57 |
| abstract_inverted_index.pairs. | 121 |
| abstract_inverted_index.search | 102 |
| abstract_inverted_index.should | 50 |
| abstract_inverted_index.slower | 83 |
| abstract_inverted_index.tackle | 86 |
| abstract_inverted_index.answers | 32 |
| abstract_inverted_index.focuses | 14 |
| abstract_inverted_index.medical | 20, 39 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.provide | 28 |
| abstract_inverted_index.queries | 36 |
| abstract_inverted_index.quickly | 59 |
| abstract_inverted_index.related | 18, 37 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.topics. | 47 |
| abstract_inverted_index.Language | 72, 111 |
| abstract_inverted_index.accurate | 29 |
| abstract_inverted_index.achieves | 128 |
| abstract_inverted_index.approach | 94, 127 |
| abstract_inverted_index.domains. | 23 |
| abstract_inverted_index.evaluate | 116 |
| abstract_inverted_index.identify | 104 |
| abstract_inverted_index.indicate | 124 |
| abstract_inverted_index.passages | 61 |
| abstract_inverted_index.question | 7 |
| abstract_inverted_index.recently | 69 |
| abstract_inverted_index.relevant | 31, 53 |
| abstract_inverted_index.retrieve | 52, 60, 75 |
| abstract_inverted_index.utilizes | 97 |
| abstract_inverted_index.answering | 8, 16 |
| abstract_inverted_index.candidate | 106 |
| abstract_inverted_index.contrast, | 68 |
| abstract_inverted_index.datasets. | 137 |
| abstract_inverted_index.developed | 70 |
| abstract_inverted_index.documents | 76 |
| abstract_inverted_index.initially | 96 |
| abstract_inverted_index.passages. | 54 |
| abstract_inverted_index.potential | 105 |
| abstract_inverted_index.precision | 79 |
| abstract_inverted_index.questions | 17 |
| abstract_inverted_index.relevance | 118 |
| abstract_inverted_index.retrieval | 56, 93 |
| abstract_inverted_index.two-stage | 92 |
| abstract_inverted_index.Retrieval, | 5 |
| abstract_inverted_index.TREC-COVID | 136 |
| abstract_inverted_index.biomedical | 6 |
| abstract_inverted_index.documents; | 107 |
| abstract_inverted_index.fine-tuned | 114 |
| abstract_inverted_index.healthcare | 22 |
| abstract_inverted_index.precision. | 66 |
| abstract_inverted_index.Information | 4 |
| abstract_inverted_index.comparative | 129 |
| abstract_inverted_index.conditions, | 40 |
| abstract_inverted_index.efficiently | 51 |
| abstract_inverted_index.preliminary | 101 |
| abstract_inverted_index.procedures, | 42 |
| abstract_inverted_index.specialized | 11 |
| abstract_inverted_index.treatments, | 41 |
| abstract_inverted_index.Experimental | 122 |
| abstract_inverted_index.medications, | 43 |
| abstract_inverted_index.performances | 130 |
| abstract_inverted_index.Well-designed | 48 |
| abstract_inverted_index.subsequently, | 108 |
| abstract_inverted_index.query–document | 120 |
| abstract_inverted_index.healthcare-related | 46 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.93075961 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |