Enhancing Chinese Dialogue Generation with Word–Phrase Fusion Embedding and Sparse SoftMax Optimization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/systems12120516
Chinese dialogue generation faces multiple challenges, such as semantic understanding, information matching, and response fluency. Generative dialogue systems for Chinese conversation are somehow difficult to construct because of the flexible word order, the great impact of word replacement on semantics, and the complex implicit context. Existing methods still have limitations in addressing these issues. To tackle these problems, this paper proposes an improved Chinese dialogue generation model based on transformer architecture. The model uses a multi-layer transformer decoder as the backbone and introduces two key techniques, namely incorporating pre-trained language model word embeddings and optimizing the sparse Softmax loss function. For word-embedding fusion, we concatenate the word vectors from the pre-trained model with character-based embeddings to enhance the semantic information of word representations. The sparse Softmax optimization effectively mitigates the overfitting issue by introducing a sparsity regularization term. Experimental results on the Chinese short text conversation (STC) dataset demonstrate that our proposed model significantly outperforms the baseline models on automatic evaluation metrics, such as BLEU and Distinct, with an average improvement of 3.5 percentage points. Human evaluations also validate the superiority of our model in generating fluent and relevant responses. This work provides new insights and solutions for building more intelligent and human-like Chinese dialogue systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/systems12120516
- https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711
- OA Status
- gold
- Cited By
- 8
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404695089
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404695089Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/systems12120516Digital Object Identifier
- Title
-
Enhancing Chinese Dialogue Generation with Word–Phrase Fusion Embedding and Sparse SoftMax OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-24Full publication date if available
- Authors
-
Shenrong Lv, Siyu Lu, Ruiyang Wang, Lirong Yin, Zhengtong Yin, Salman A. AlQahtani, Jiawei Tian, Wenfeng ZhengList of authors in order
- Landing page
-
https://doi.org/10.3390/systems12120516Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711Direct OA link when available
- Concepts
-
Softmax function, Embedding, Phrase, Computer science, Natural language processing, Artificial intelligence, Word (group theory), Word embedding, Fusion, Speech recognition, Linguistics, Deep learning, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404695089 |
|---|---|
| doi | https://doi.org/10.3390/systems12120516 |
| ids.doi | https://doi.org/10.3390/systems12120516 |
| ids.openalex | https://openalex.org/W4404695089 |
| fwci | 5.11022839 |
| type | article |
| title | Enhancing Chinese Dialogue Generation with Word–Phrase Fusion Embedding and Sparse SoftMax Optimization |
| biblio.issue | 12 |
| biblio.volume | 12 |
| biblio.last_page | 516 |
| biblio.first_page | 516 |
| topics[0].id | https://openalex.org/T12031 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech and dialogue systems |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9902999997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| concepts[0].id | https://openalex.org/C188441871 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6719725131988525 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[0].display_name | Softmax function |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.649070680141449 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C2776224158 |
| concepts[2].level | 2 |
| concepts[2].score | 0.641258716583252 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q187931 |
| concepts[2].display_name | Phrase |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.598927915096283 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5874282121658325 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5774857997894287 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C90805587 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5411848425865173 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[6].display_name | Word (group theory) |
| concepts[7].id | https://openalex.org/C2777462759 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5284497737884521 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[7].display_name | Word embedding |
| concepts[8].id | https://openalex.org/C158525013 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5220163464546204 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[8].display_name | Fusion |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37391847372055054 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3150934875011444 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.08305183053016663 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07408455014228821 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/softmax-function |
| keywords[0].score | 0.6719725131988525 |
| keywords[0].display_name | Softmax function |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.649070680141449 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/phrase |
| keywords[2].score | 0.641258716583252 |
| keywords[2].display_name | Phrase |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.598927915096283 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.5874282121658325 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5774857997894287 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/word |
| keywords[6].score | 0.5411848425865173 |
| keywords[6].display_name | Word (group theory) |
| keywords[7].id | https://openalex.org/keywords/word-embedding |
| keywords[7].score | 0.5284497737884521 |
| keywords[7].display_name | Word embedding |
| keywords[8].id | https://openalex.org/keywords/fusion |
| keywords[8].score | 0.5220163464546204 |
| keywords[8].display_name | Fusion |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.37391847372055054 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/linguistics |
| keywords[10].score | 0.3150934875011444 |
| keywords[10].display_name | Linguistics |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.08305183053016663 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/philosophy |
| keywords[12].score | 0.07408455014228821 |
| keywords[12].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.3390/systems12120516 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219410 |
| locations[0].source.issn | 2079-8954 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-8954 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Systems |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Systems |
| locations[0].landing_page_url | https://doi.org/10.3390/systems12120516 |
| locations[1].id | pmh:oai:doaj.org/article:2b1db32a94914af6bdfb078990a6877f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Systems, Vol 12, Iss 12, p 516 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/2b1db32a94914af6bdfb078990a6877f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5111358223 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shenrong Lv |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[0].institutions[0].id | https://openalex.org/I150229711 |
| authorships[0].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shenrong Lv |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[1].author.id | https://openalex.org/A5102893051 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-7983-9608 |
| authorships[1].author.display_name | Siyu Lu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[1].institutions[0].id | https://openalex.org/I150229711 |
| authorships[1].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Siyu Lu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[2].author.id | https://openalex.org/A5101509017 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7698-8532 |
| authorships[2].author.display_name | Ruiyang Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[2].institutions[0].id | https://openalex.org/I150229711 |
| authorships[2].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ruiyang Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[3].author.id | https://openalex.org/A5023971713 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5022-610X |
| authorships[3].author.display_name | Lirong Yin |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I121820613 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA |
| authorships[3].institutions[0].id | https://openalex.org/I121820613 |
| authorships[3].institutions[0].ror | https://ror.org/05ect4e57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I121820613 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Louisiana State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lirong Yin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA |
| authorships[4].author.id | https://openalex.org/A5021201289 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9818-9205 |
| authorships[4].author.display_name | Zhengtong Yin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China |
| authorships[4].institutions[0].id | https://openalex.org/I178232147 |
| authorships[4].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guizhou University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhengtong Yin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China |
| authorships[5].author.id | https://openalex.org/A5046464125 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1233-1774 |
| authorships[5].author.display_name | Salman A. AlQahtani |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I28022161 |
| authorships[5].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | King Saud University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Salman A. AlQahtani |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia |
| authorships[6].author.id | https://openalex.org/A5052594084 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6398-7461 |
| authorships[6].author.display_name | Jiawei Tian |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4575257 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Major in Bio Artificial Intelligence, Hanyang University, Ansansi 15577, Republic of Korea |
| authorships[6].institutions[0].id | https://openalex.org/I4575257 |
| authorships[6].institutions[0].ror | https://ror.org/046865y68 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4575257 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Hanyang University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jiawei Tian |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, Major in Bio Artificial Intelligence, Hanyang University, Ansansi 15577, Republic of Korea |
| authorships[7].author.id | https://openalex.org/A5062384828 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8486-1654 |
| authorships[7].author.display_name | Wenfeng Zheng |
| authorships[7].countries | CN, SA |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I28022161 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia |
| authorships[7].institutions[0].id | https://openalex.org/I150229711 |
| authorships[7].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[7].institutions[1].id | https://openalex.org/I28022161 |
| authorships[7].institutions[1].ror | https://ror.org/02f81g417 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I28022161 |
| authorships[7].institutions[1].country_code | SA |
| authorships[7].institutions[1].display_name | King Saud University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wenfeng Zheng |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia, School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-26T00:00:00 |
| display_name | Enhancing Chinese Dialogue Generation with Word–Phrase Fusion Embedding and Sparse SoftMax Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12031 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech and dialogue systems |
| related_works | https://openalex.org/W3107204728, https://openalex.org/W4287591324, https://openalex.org/W3108503355, https://openalex.org/W3090555870, https://openalex.org/W4226420367, https://openalex.org/W2962876041, https://openalex.org/W3022820045, https://openalex.org/W2801655600, https://openalex.org/W3005627584, https://openalex.org/W4286432911 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/systems12120516 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219410 |
| best_oa_location.source.issn | 2079-8954 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-8954 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Systems |
| best_oa_location.landing_page_url | https://doi.org/10.3390/systems12120516 |
| primary_location.id | doi:10.3390/systems12120516 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219410 |
| primary_location.source.issn | 2079-8954 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-8954 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Systems |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-8954/12/12/516/pdf?version=1732445711 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Systems |
| primary_location.landing_page_url | https://doi.org/10.3390/systems12120516 |
| publication_date | 2024-11-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4372266972, https://openalex.org/W3114090323, https://openalex.org/W3188331065, https://openalex.org/W3093680609, https://openalex.org/W6775976726, https://openalex.org/W4293192607, https://openalex.org/W2757121784, https://openalex.org/W3008199571, https://openalex.org/W3088273075, https://openalex.org/W4386933640, https://openalex.org/W3093861107, https://openalex.org/W3161207330, https://openalex.org/W3022363208, https://openalex.org/W3109760002, https://openalex.org/W3045716482, https://openalex.org/W3091618127, https://openalex.org/W4315498971, https://openalex.org/W4200565673, https://openalex.org/W3102445752, https://openalex.org/W2979826702, https://openalex.org/W3009428740, https://openalex.org/W4378974641, https://openalex.org/W3012871941, https://openalex.org/W3036725988, https://openalex.org/W2896457183, https://openalex.org/W4394828356, https://openalex.org/W4294974598, https://openalex.org/W6784550210, https://openalex.org/W3208784673, https://openalex.org/W3143399951, https://openalex.org/W4391580140, https://openalex.org/W2262393948, https://openalex.org/W3025787433, https://openalex.org/W2996091850, https://openalex.org/W3097159520, https://openalex.org/W6799408436, https://openalex.org/W4389519999, https://openalex.org/W1498441903, https://openalex.org/W2102531443, https://openalex.org/W4387875671, https://openalex.org/W6754700188, https://openalex.org/W3100210539, https://openalex.org/W4308509801, https://openalex.org/W2610934608 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 74, 134 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.an | 61, 168 |
| abstract_inverted_index.as | 7, 78, 163 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 50, 184 |
| abstract_inverted_index.of | 27, 35, 120, 171, 181 |
| abstract_inverted_index.on | 38, 68, 140, 158 |
| abstract_inverted_index.to | 24, 115 |
| abstract_inverted_index.we | 103 |
| abstract_inverted_index.3.5 | 172 |
| abstract_inverted_index.For | 100 |
| abstract_inverted_index.The | 71, 123 |
| abstract_inverted_index.and | 12, 40, 81, 93, 165, 187, 195, 201 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.for | 18, 197 |
| abstract_inverted_index.key | 84 |
| abstract_inverted_index.new | 193 |
| abstract_inverted_index.our | 150, 182 |
| abstract_inverted_index.the | 28, 32, 41, 79, 95, 105, 109, 117, 129, 141, 155, 179 |
| abstract_inverted_index.two | 83 |
| abstract_inverted_index.BLEU | 164 |
| abstract_inverted_index.This | 190 |
| abstract_inverted_index.also | 177 |
| abstract_inverted_index.from | 108 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.loss | 98 |
| abstract_inverted_index.more | 199 |
| abstract_inverted_index.such | 6, 162 |
| abstract_inverted_index.text | 144 |
| abstract_inverted_index.that | 149 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.uses | 73 |
| abstract_inverted_index.with | 112, 167 |
| abstract_inverted_index.word | 30, 36, 91, 106, 121 |
| abstract_inverted_index.work | 191 |
| abstract_inverted_index.(STC) | 146 |
| abstract_inverted_index.Human | 175 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.faces | 3 |
| abstract_inverted_index.great | 33 |
| abstract_inverted_index.issue | 131 |
| abstract_inverted_index.model | 66, 72, 90, 111, 152, 183 |
| abstract_inverted_index.paper | 59 |
| abstract_inverted_index.short | 143 |
| abstract_inverted_index.still | 47 |
| abstract_inverted_index.term. | 137 |
| abstract_inverted_index.these | 52, 56 |
| abstract_inverted_index.fluent | 186 |
| abstract_inverted_index.impact | 34 |
| abstract_inverted_index.models | 157 |
| abstract_inverted_index.namely | 86 |
| abstract_inverted_index.order, | 31 |
| abstract_inverted_index.sparse | 96, 124 |
| abstract_inverted_index.tackle | 55 |
| abstract_inverted_index.Chinese | 0, 19, 63, 142, 203 |
| abstract_inverted_index.Softmax | 97, 125 |
| abstract_inverted_index.average | 169 |
| abstract_inverted_index.because | 26 |
| abstract_inverted_index.complex | 42 |
| abstract_inverted_index.dataset | 147 |
| abstract_inverted_index.decoder | 77 |
| abstract_inverted_index.enhance | 116 |
| abstract_inverted_index.fusion, | 102 |
| abstract_inverted_index.issues. | 53 |
| abstract_inverted_index.methods | 46 |
| abstract_inverted_index.points. | 174 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.somehow | 22 |
| abstract_inverted_index.systems | 17 |
| abstract_inverted_index.vectors | 107 |
| abstract_inverted_index.Existing | 45 |
| abstract_inverted_index.backbone | 80 |
| abstract_inverted_index.baseline | 156 |
| abstract_inverted_index.building | 198 |
| abstract_inverted_index.context. | 44 |
| abstract_inverted_index.dialogue | 1, 16, 64, 204 |
| abstract_inverted_index.flexible | 29 |
| abstract_inverted_index.fluency. | 14 |
| abstract_inverted_index.implicit | 43 |
| abstract_inverted_index.improved | 62 |
| abstract_inverted_index.insights | 194 |
| abstract_inverted_index.language | 89 |
| abstract_inverted_index.metrics, | 161 |
| abstract_inverted_index.multiple | 4 |
| abstract_inverted_index.proposed | 151 |
| abstract_inverted_index.proposes | 60 |
| abstract_inverted_index.provides | 192 |
| abstract_inverted_index.relevant | 188 |
| abstract_inverted_index.response | 13 |
| abstract_inverted_index.semantic | 8, 118 |
| abstract_inverted_index.sparsity | 135 |
| abstract_inverted_index.systems. | 205 |
| abstract_inverted_index.validate | 178 |
| abstract_inverted_index.Distinct, | 166 |
| abstract_inverted_index.automatic | 159 |
| abstract_inverted_index.construct | 25 |
| abstract_inverted_index.difficult | 23 |
| abstract_inverted_index.function. | 99 |
| abstract_inverted_index.matching, | 11 |
| abstract_inverted_index.mitigates | 128 |
| abstract_inverted_index.problems, | 57 |
| abstract_inverted_index.solutions | 196 |
| abstract_inverted_index.Generative | 15 |
| abstract_inverted_index.addressing | 51 |
| abstract_inverted_index.embeddings | 92, 114 |
| abstract_inverted_index.evaluation | 160 |
| abstract_inverted_index.generating | 185 |
| abstract_inverted_index.generation | 2, 65 |
| abstract_inverted_index.human-like | 202 |
| abstract_inverted_index.introduces | 82 |
| abstract_inverted_index.optimizing | 94 |
| abstract_inverted_index.percentage | 173 |
| abstract_inverted_index.responses. | 189 |
| abstract_inverted_index.semantics, | 39 |
| abstract_inverted_index.challenges, | 5 |
| abstract_inverted_index.concatenate | 104 |
| abstract_inverted_index.demonstrate | 148 |
| abstract_inverted_index.effectively | 127 |
| abstract_inverted_index.evaluations | 176 |
| abstract_inverted_index.improvement | 170 |
| abstract_inverted_index.information | 10, 119 |
| abstract_inverted_index.intelligent | 200 |
| abstract_inverted_index.introducing | 133 |
| abstract_inverted_index.limitations | 49 |
| abstract_inverted_index.multi-layer | 75 |
| abstract_inverted_index.outperforms | 154 |
| abstract_inverted_index.overfitting | 130 |
| abstract_inverted_index.pre-trained | 88, 110 |
| abstract_inverted_index.replacement | 37 |
| abstract_inverted_index.superiority | 180 |
| abstract_inverted_index.techniques, | 85 |
| abstract_inverted_index.transformer | 69, 76 |
| abstract_inverted_index.Experimental | 138 |
| abstract_inverted_index.conversation | 20, 145 |
| abstract_inverted_index.optimization | 126 |
| abstract_inverted_index.architecture. | 70 |
| abstract_inverted_index.incorporating | 87 |
| abstract_inverted_index.significantly | 153 |
| abstract_inverted_index.regularization | 136 |
| abstract_inverted_index.understanding, | 9 |
| abstract_inverted_index.word-embedding | 101 |
| abstract_inverted_index.character-based | 113 |
| abstract_inverted_index.representations. | 122 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5062384828 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I150229711, https://openalex.org/I28022161 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.94281954 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |