Enhancing Cone-Beam CT Image Quality in TIPSS Procedures Using AI Denoising Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics14171989
Purpose: This study evaluates a deep learning-based denoising algorithm to improve the trade-off between radiation dose, image noise, and motion artifacts in TIPSS procedures, aiming for shorter acquisition times and reduced radiation with maintained diagnostic quality. Methods: In this retrospective study, TIPSS patients were divided based on CBCT acquisition times of 6 s and 3 s. Traditional weighted filtered back projection (Original) and an AI denoising algorithm (AID) were used for image reconstructions. Objective assessments of image quality included contrast, noise levels, and contrast-to-noise ratios (CNRs) through place-consistent region-of-interest (ROI) measurements across various critical areas pertinent to the TIPSS procedure. Subjective assessments were conducted by two blinded radiologists who evaluated the overall image quality, sharpness, contrast, and motion artifacts for each dataset combination. Statistical significance was determined using a mixed-effects model (p ≤ 0.05). Results: From an initial cohort of 60 TIPSS patients, 44 were selected and paired. The mean dose-area product (DAP) for the 6 s acquisitions was 5138.50 ± 1325.57 µGy·m2, significantly higher than the 2514.06 ± 691.59 µGym2 obtained for the 3 s series. CNR was highest in the 6 s-AID series (p < 0.05). Both denoised and original series showed consistent contrast for 6 s and 3 s acquisitions, with no significant noise differences between the 6 s Original and 3 s AID images (p > 0.9). Subjective assessments indicated superior quality in 6 s-AID images, with no significant overall quality difference between the 6 s-Original and 3 s-AID series (p > 0.9). Conclusions: The AI denoising algorithm enhances CBCT image quality in TIPSS procedures, allowing for shorter scans that reduce radiation exposure and minimize motion artifacts.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics14171989
- OA Status
- gold
- Cited By
- 2
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402377258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402377258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics14171989Digital Object Identifier
- Title
-
Enhancing Cone-Beam CT Image Quality in TIPSS Procedures Using AI DenoisingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-09Full publication date if available
- Authors
-
Reza Dehdab, Andreas Brendlin, Gerd Grözinger, Haidara Almansour, Jan M. Brendel, Sebastian Gassenmaier, Patrick Ghibes, Sebastian Werner, Konstantin Nikolaou, Saif AfatList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics14171989Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/diagnostics14171989Direct OA link when available
- Concepts
-
Image quality, Contrast (vision), Artificial intelligence, Noise (video), Noise reduction, Nuclear medicine, Image noise, Medicine, Cone beam computed tomography, Mathematics, Projection (relational algebra), Radon transform, Radiation dose, Computer vision, Computer science, Image (mathematics), Radiology, Algorithm, Computed tomographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402377258 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics14171989 |
| ids.doi | https://doi.org/10.3390/diagnostics14171989 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39272773 |
| ids.openalex | https://openalex.org/W4402377258 |
| fwci | 1.63814764 |
| type | article |
| title | Enhancing Cone-Beam CT Image Quality in TIPSS Procedures Using AI Denoising |
| biblio.issue | 17 |
| biblio.volume | 14 |
| biblio.last_page | 1989 |
| biblio.first_page | 1989 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10844 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiation Dose and Imaging |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C55020928 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7491673231124878 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[0].display_name | Image quality |
| concepts[1].id | https://openalex.org/C2776502983 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6146382093429565 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[1].display_name | Contrast (vision) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5508008599281311 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C99498987 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5272454619407654 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[3].display_name | Noise (video) |
| concepts[4].id | https://openalex.org/C163294075 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5099056959152222 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[4].display_name | Noise reduction |
| concepts[5].id | https://openalex.org/C2989005 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4968254864215851 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[5].display_name | Nuclear medicine |
| concepts[6].id | https://openalex.org/C35772409 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4714782238006592 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1323086 |
| concepts[6].display_name | Image noise |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4605376720428467 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C2779813781 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43886083364486694 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1224951 |
| concepts[8].display_name | Cone beam computed tomography |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.432169646024704 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C57493831 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43131938576698303 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[10].display_name | Projection (relational algebra) |
| concepts[11].id | https://openalex.org/C197231052 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42956817150115967 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q979829 |
| concepts[11].display_name | Radon transform |
| concepts[12].id | https://openalex.org/C2987700449 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41684138774871826 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q186161 |
| concepts[12].display_name | Radiation dose |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.40416476130485535 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.39936524629592896 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.33646517992019653 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C126838900 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2546897530555725 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[16].display_name | Radiology |
| concepts[17].id | https://openalex.org/C11413529 |
| concepts[17].level | 1 |
| concepts[17].score | 0.20838099718093872 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[17].display_name | Algorithm |
| concepts[18].id | https://openalex.org/C544519230 |
| concepts[18].level | 2 |
| concepts[18].score | 0.16441383957862854 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[18].display_name | Computed tomography |
| keywords[0].id | https://openalex.org/keywords/image-quality |
| keywords[0].score | 0.7491673231124878 |
| keywords[0].display_name | Image quality |
| keywords[1].id | https://openalex.org/keywords/contrast |
| keywords[1].score | 0.6146382093429565 |
| keywords[1].display_name | Contrast (vision) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5508008599281311 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/noise |
| keywords[3].score | 0.5272454619407654 |
| keywords[3].display_name | Noise (video) |
| keywords[4].id | https://openalex.org/keywords/noise-reduction |
| keywords[4].score | 0.5099056959152222 |
| keywords[4].display_name | Noise reduction |
| keywords[5].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[5].score | 0.4968254864215851 |
| keywords[5].display_name | Nuclear medicine |
| keywords[6].id | https://openalex.org/keywords/image-noise |
| keywords[6].score | 0.4714782238006592 |
| keywords[6].display_name | Image noise |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.4605376720428467 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/cone-beam-computed-tomography |
| keywords[8].score | 0.43886083364486694 |
| keywords[8].display_name | Cone beam computed tomography |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.432169646024704 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/projection |
| keywords[10].score | 0.43131938576698303 |
| keywords[10].display_name | Projection (relational algebra) |
| keywords[11].id | https://openalex.org/keywords/radon-transform |
| keywords[11].score | 0.42956817150115967 |
| keywords[11].display_name | Radon transform |
| keywords[12].id | https://openalex.org/keywords/radiation-dose |
| keywords[12].score | 0.41684138774871826 |
| keywords[12].display_name | Radiation dose |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.40416476130485535 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.39936524629592896 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.33646517992019653 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/radiology |
| keywords[16].score | 0.2546897530555725 |
| keywords[16].display_name | Radiology |
| keywords[17].id | https://openalex.org/keywords/algorithm |
| keywords[17].score | 0.20838099718093872 |
| keywords[17].display_name | Algorithm |
| keywords[18].id | https://openalex.org/keywords/computed-tomography |
| keywords[18].score | 0.16441383957862854 |
| keywords[18].display_name | Computed tomography |
| language | en |
| locations[0].id | doi:10.3390/diagnostics14171989 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics14171989 |
| locations[1].id | pmid:39272773 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39272773 |
| locations[2].id | pmh:oai:doaj.org/article:4c9f068e31a645b3b7459d24d6a24d35 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics, Vol 14, Iss 17, p 1989 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/4c9f068e31a645b3b7459d24d6a24d35 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11394631 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11394631 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5036079535 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3496-8808 |
| authorships[0].author.display_name | Reza Dehdab |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Reza Dehdab |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[1].author.id | https://openalex.org/A5013707174 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5961-9727 |
| authorships[1].author.display_name | Andreas Brendlin |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas S. Brendlin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[2].author.id | https://openalex.org/A5072491611 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0102-187X |
| authorships[2].author.display_name | Gerd Grözinger |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gerd Grözinger |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[3].author.id | https://openalex.org/A5058516007 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1672-3855 |
| authorships[3].author.display_name | Haidara Almansour |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Haidara Almansour |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[4].author.id | https://openalex.org/A5068503459 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2729-610X |
| authorships[4].author.display_name | Jan M. Brendel |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jan Michael Brendel |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[5].author.id | https://openalex.org/A5014445043 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3701-2227 |
| authorships[5].author.display_name | Sebastian Gassenmaier |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sebastian Gassenmaier |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[6].author.id | https://openalex.org/A5007165074 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Patrick Ghibes |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Patrick Ghibes |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[7].author.id | https://openalex.org/A5101525782 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4542-6462 |
| authorships[7].author.display_name | Sebastian Werner |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Sebastian Werner |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[8].author.id | https://openalex.org/A5014041342 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2668-7325 |
| authorships[8].author.display_name | Konstantin Nikolaou |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Konstantin Nikolaou |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[9].author.id | https://openalex.org/A5063181665 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6861-6245 |
| authorships[9].author.display_name | Saif Afat |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Saif Afat |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, D-72076 Tuebingen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/diagnostics14171989 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Cone-Beam CT Image Quality in TIPSS Procedures Using AI Denoising |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W4401572286, https://openalex.org/W2375071291, https://openalex.org/W2066798134, https://openalex.org/W2467317383, https://openalex.org/W2348053633, https://openalex.org/W3029087037, https://openalex.org/W3145442390, https://openalex.org/W2788190087, https://openalex.org/W2392443208, https://openalex.org/W2347508331 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/diagnostics14171989 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics14171989 |
| primary_location.id | doi:10.3390/diagnostics14171989 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics14171989 |
| publication_date | 2024-09-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6774324420, https://openalex.org/W2317040377, https://openalex.org/W2999603578, https://openalex.org/W2146391053, https://openalex.org/W2314215304, https://openalex.org/W2004475779, https://openalex.org/W2791896958, https://openalex.org/W6694600352, https://openalex.org/W3196342110, https://openalex.org/W4224316215, https://openalex.org/W3042957015, https://openalex.org/W2167279371, https://openalex.org/W6858945400, https://openalex.org/W4366463424, https://openalex.org/W6811281912, https://openalex.org/W4383711389, https://openalex.org/W2750947878, https://openalex.org/W2342753960, https://openalex.org/W4390428612, https://openalex.org/W2949693510, https://openalex.org/W2960428267, https://openalex.org/W4206815145, https://openalex.org/W4391389491, https://openalex.org/W2277491164, https://openalex.org/W4388840126, https://openalex.org/W4229079475, https://openalex.org/W3006836284 |
| referenced_works_count | 27 |
| abstract_inverted_index.3 | 54, 174, 200, 214, 241 |
| abstract_inverted_index.6 | 51, 155, 182, 197, 210, 227, 238 |
| abstract_inverted_index.a | 4, 128 |
| abstract_inverted_index.s | 52, 156, 175, 198, 201, 211, 215 |
| abstract_inverted_index.(p | 131, 185, 218, 244 |
| abstract_inverted_index.44 | 143 |
| abstract_inverted_index.60 | 140 |
| abstract_inverted_index.AI | 64, 249 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.an | 63, 136 |
| abstract_inverted_index.by | 104 |
| abstract_inverted_index.in | 21, 180, 226, 256 |
| abstract_inverted_index.no | 204, 231 |
| abstract_inverted_index.of | 50, 75, 139 |
| abstract_inverted_index.on | 46 |
| abstract_inverted_index.s. | 55 |
| abstract_inverted_index.to | 9, 96 |
| abstract_inverted_index.± | 160, 168 |
| abstract_inverted_index.AID | 216 |
| abstract_inverted_index.CNR | 177 |
| abstract_inverted_index.The | 148, 248 |
| abstract_inverted_index.and | 18, 29, 53, 62, 82, 116, 146, 190, 199, 213, 240, 267 |
| abstract_inverted_index.for | 25, 70, 119, 153, 172, 196, 260 |
| abstract_inverted_index.the | 11, 97, 110, 154, 166, 173, 181, 209, 237 |
| abstract_inverted_index.two | 105 |
| abstract_inverted_index.was | 125, 158, 178 |
| abstract_inverted_index.who | 108 |
| abstract_inverted_index.≤ | 132 |
| abstract_inverted_index.> | 219, 245 |
| abstract_inverted_index.< | 186 |
| abstract_inverted_index.Both | 188 |
| abstract_inverted_index.CBCT | 47, 253 |
| abstract_inverted_index.From | 135 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.back | 59 |
| abstract_inverted_index.deep | 5 |
| abstract_inverted_index.each | 120 |
| abstract_inverted_index.mean | 149 |
| abstract_inverted_index.than | 165 |
| abstract_inverted_index.that | 263 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.used | 69 |
| abstract_inverted_index.were | 43, 68, 102, 144 |
| abstract_inverted_index.with | 32, 203, 230 |
| abstract_inverted_index.(AID) | 67 |
| abstract_inverted_index.(DAP) | 152 |
| abstract_inverted_index.(ROI) | 89 |
| abstract_inverted_index.0.9). | 220, 246 |
| abstract_inverted_index.TIPSS | 22, 41, 98, 141, 257 |
| abstract_inverted_index.areas | 94 |
| abstract_inverted_index.based | 45 |
| abstract_inverted_index.dose, | 15 |
| abstract_inverted_index.image | 16, 71, 76, 112, 254 |
| abstract_inverted_index.model | 130 |
| abstract_inverted_index.noise | 80, 206 |
| abstract_inverted_index.s-AID | 183, 228, 242 |
| abstract_inverted_index.scans | 262 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.times | 28, 49 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.(CNRs) | 85 |
| abstract_inverted_index.0.05). | 133, 187 |
| abstract_inverted_index.691.59 | 169 |
| abstract_inverted_index.across | 91 |
| abstract_inverted_index.aiming | 24 |
| abstract_inverted_index.cohort | 138 |
| abstract_inverted_index.higher | 164 |
| abstract_inverted_index.images | 217 |
| abstract_inverted_index.motion | 19, 117, 269 |
| abstract_inverted_index.noise, | 17 |
| abstract_inverted_index.ratios | 84 |
| abstract_inverted_index.reduce | 264 |
| abstract_inverted_index.series | 184, 192, 243 |
| abstract_inverted_index.showed | 193 |
| abstract_inverted_index.study, | 40 |
| abstract_inverted_index.µGym2 | 170 |
| abstract_inverted_index.1325.57 | 161 |
| abstract_inverted_index.2514.06 | 167 |
| abstract_inverted_index.5138.50 | 159 |
| abstract_inverted_index.between | 13, 208, 236 |
| abstract_inverted_index.blinded | 106 |
| abstract_inverted_index.dataset | 121 |
| abstract_inverted_index.divided | 44 |
| abstract_inverted_index.highest | 179 |
| abstract_inverted_index.images, | 229 |
| abstract_inverted_index.improve | 10 |
| abstract_inverted_index.initial | 137 |
| abstract_inverted_index.levels, | 81 |
| abstract_inverted_index.overall | 111, 233 |
| abstract_inverted_index.paired. | 147 |
| abstract_inverted_index.product | 151 |
| abstract_inverted_index.quality | 77, 225, 234, 255 |
| abstract_inverted_index.reduced | 30 |
| abstract_inverted_index.series. | 176 |
| abstract_inverted_index.shorter | 26, 261 |
| abstract_inverted_index.through | 86 |
| abstract_inverted_index.various | 92 |
| abstract_inverted_index.Methods: | 36 |
| abstract_inverted_index.Original | 212 |
| abstract_inverted_index.Purpose: | 0 |
| abstract_inverted_index.Results: | 134 |
| abstract_inverted_index.allowing | 259 |
| abstract_inverted_index.contrast | 195 |
| abstract_inverted_index.critical | 93 |
| abstract_inverted_index.denoised | 189 |
| abstract_inverted_index.enhances | 252 |
| abstract_inverted_index.exposure | 266 |
| abstract_inverted_index.filtered | 58 |
| abstract_inverted_index.included | 78 |
| abstract_inverted_index.minimize | 268 |
| abstract_inverted_index.obtained | 171 |
| abstract_inverted_index.original | 191 |
| abstract_inverted_index.patients | 42 |
| abstract_inverted_index.quality, | 113 |
| abstract_inverted_index.quality. | 35 |
| abstract_inverted_index.selected | 145 |
| abstract_inverted_index.superior | 224 |
| abstract_inverted_index.weighted | 57 |
| abstract_inverted_index.Objective | 73 |
| abstract_inverted_index.algorithm | 8, 66, 251 |
| abstract_inverted_index.artifacts | 20, 118 |
| abstract_inverted_index.conducted | 103 |
| abstract_inverted_index.contrast, | 79, 115 |
| abstract_inverted_index.denoising | 7, 65, 250 |
| abstract_inverted_index.dose-area | 150 |
| abstract_inverted_index.evaluated | 109 |
| abstract_inverted_index.evaluates | 3 |
| abstract_inverted_index.indicated | 223 |
| abstract_inverted_index.patients, | 142 |
| abstract_inverted_index.pertinent | 95 |
| abstract_inverted_index.radiation | 14, 31, 265 |
| abstract_inverted_index.trade-off | 12 |
| abstract_inverted_index.µGy·m2, | 162 |
| abstract_inverted_index.(Original) | 61 |
| abstract_inverted_index.Subjective | 100, 221 |
| abstract_inverted_index.artifacts. | 270 |
| abstract_inverted_index.consistent | 194 |
| abstract_inverted_index.determined | 126 |
| abstract_inverted_index.diagnostic | 34 |
| abstract_inverted_index.difference | 235 |
| abstract_inverted_index.maintained | 33 |
| abstract_inverted_index.procedure. | 99 |
| abstract_inverted_index.projection | 60 |
| abstract_inverted_index.s-Original | 239 |
| abstract_inverted_index.sharpness, | 114 |
| abstract_inverted_index.Statistical | 123 |
| abstract_inverted_index.Traditional | 56 |
| abstract_inverted_index.acquisition | 27, 48 |
| abstract_inverted_index.assessments | 74, 101, 222 |
| abstract_inverted_index.differences | 207 |
| abstract_inverted_index.procedures, | 23, 258 |
| abstract_inverted_index.significant | 205, 232 |
| abstract_inverted_index.Conclusions: | 247 |
| abstract_inverted_index.acquisitions | 157 |
| abstract_inverted_index.combination. | 122 |
| abstract_inverted_index.measurements | 90 |
| abstract_inverted_index.radiologists | 107 |
| abstract_inverted_index.significance | 124 |
| abstract_inverted_index.acquisitions, | 202 |
| abstract_inverted_index.mixed-effects | 129 |
| abstract_inverted_index.retrospective | 39 |
| abstract_inverted_index.significantly | 163 |
| abstract_inverted_index.learning-based | 6 |
| abstract_inverted_index.place-consistent | 87 |
| abstract_inverted_index.reconstructions. | 72 |
| abstract_inverted_index.contrast-to-noise | 83 |
| abstract_inverted_index.region-of-interest | 88 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.78801375 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |