Enhancing Cross-domain Link Prediction via Evolution Process Modeling Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.02168
This work proposes DyExpert, a dynamic graph model for cross-domain link prediction. It can explicitly model historical evolving processes to learn the evolution pattern of a specific downstream graph and subsequently make pattern-specific link predictions. DyExpert adopts a decode-only transformer and is capable of efficiently parallel training and inference by \textit{conditioned link generation} that integrates both evolution modeling and link prediction. DyExpert is trained by extensive dynamic graphs across diverse domains, comprising 6M dynamic edges. Extensive experiments on eight untrained graphs demonstrate that DyExpert achieves state-of-the-art performance in cross-domain link prediction. Compared to the advanced baseline under the same setting, DyExpert achieves an average of 11.40% improvement Average Precision across eight graphs. More impressive, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.02168
- https://arxiv.org/pdf/2402.02168
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391590818
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391590818Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.02168Digital Object Identifier
- Title
-
Enhancing Cross-domain Link Prediction via Evolution Process ModelingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-03Full publication date if available
- Authors
-
Xuanwen Huang, Wei Chow, Yan Wang, Ziwei Chai, Chunping Wang, Lei Chen, Yang YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.02168Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.02168Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.02168Direct OA link when available
- Concepts
-
Link (geometry), Computer science, Graph, Cross-link, Domain (mathematical analysis), Theoretical computer science, Mathematics, Computer network, Physics, Mathematical analysis, Polymer, Nuclear magnetic resonanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391590818 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.02168 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.02168 |
| ids.openalex | https://openalex.org/W4391590818 |
| fwci | |
| type | preprint |
| title | Enhancing Cross-domain Link Prediction via Evolution Process Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12127 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9797999858856201 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Software System Performance and Reliability |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9765999913215637 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9567999839782715 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778753846 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7715986967086792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6554239 |
| concepts[0].display_name | Link (geometry) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5655689239501953 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5024902820587158 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C142708767 |
| concepts[3].level | 3 |
| concepts[3].score | 0.42259982228279114 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q898597 |
| concepts[3].display_name | Cross-link |
| concepts[4].id | https://openalex.org/C36503486 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41827893257141113 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[4].display_name | Domain (mathematical analysis) |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2463592290878296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.20698624849319458 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C31258907 |
| concepts[7].level | 1 |
| concepts[7].score | 0.14856085181236267 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[7].display_name | Computer network |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08533945679664612 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C521977710 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q81163 |
| concepts[10].display_name | Polymer |
| concepts[11].id | https://openalex.org/C46141821 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[11].display_name | Nuclear magnetic resonance |
| keywords[0].id | https://openalex.org/keywords/link |
| keywords[0].score | 0.7715986967086792 |
| keywords[0].display_name | Link (geometry) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5655689239501953 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5024902820587158 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/cross-link |
| keywords[3].score | 0.42259982228279114 |
| keywords[3].display_name | Cross-link |
| keywords[4].id | https://openalex.org/keywords/domain |
| keywords[4].score | 0.41827893257141113 |
| keywords[4].display_name | Domain (mathematical analysis) |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.2463592290878296 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.20698624849319458 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/computer-network |
| keywords[7].score | 0.14856085181236267 |
| keywords[7].display_name | Computer network |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.08533945679664612 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.02168 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.02168 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.02168 |
| locations[1].id | doi:10.48550/arxiv.2402.02168 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.02168 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039417407 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4668-4570 |
| authorships[0].author.display_name | Xuanwen Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Xuanwen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104240183 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wei Chow |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chow, Wei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100322712 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5344-1884 |
| authorships[2].author.display_name | Yan Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056731969 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3532-7145 |
| authorships[3].author.display_name | Ziwei Chai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chai, Ziwei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5038718363 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3841-1919 |
| authorships[4].author.display_name | Chunping Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Chunping |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100333516 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8257-5806 |
| authorships[5].author.display_name | Lei Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Lei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100397725 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0608-9408 |
| authorships[6].author.display_name | Yang Yang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yang, Yang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.02168 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-07T00:00:00 |
| display_name | Enhancing Cross-domain Link Prediction via Evolution Process Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12127 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9797999858856201 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Software System Performance and Reliability |
| related_works | https://openalex.org/W2299249278, https://openalex.org/W2034875560, https://openalex.org/W3200586296, https://openalex.org/W2171285507, https://openalex.org/W4255372043, https://openalex.org/W2795519627, https://openalex.org/W1518185400, https://openalex.org/W4247322236, https://openalex.org/W2401434987, https://openalex.org/W2978271299 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.02168 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.02168 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.02168 |
| primary_location.id | pmh:oai:arXiv.org:2402.02168 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.02168 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.02168 |
| publication_date | 2024-02-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.6 | 125 |
| abstract_inverted_index.8 | 121 |
| abstract_inverted_index.a | 4, 25, 37 |
| abstract_inverted_index.6M | 72 |
| abstract_inverted_index.It | 12 |
| abstract_inverted_index.an | 102 |
| abstract_inverted_index.by | 49, 64 |
| abstract_inverted_index.in | 87 |
| abstract_inverted_index.is | 41, 62 |
| abstract_inverted_index.it | 114 |
| abstract_inverted_index.of | 24, 43, 104, 120 |
| abstract_inverted_index.on | 77, 124 |
| abstract_inverted_index.to | 19, 92 |
| abstract_inverted_index.and | 29, 40, 47, 58 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.the | 21, 93, 97, 116 |
| abstract_inverted_index.More | 112 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 55 |
| abstract_inverted_index.link | 10, 33, 51, 59, 89 |
| abstract_inverted_index.make | 31 |
| abstract_inverted_index.same | 98 |
| abstract_inverted_index.that | 53, 82 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.eight | 78, 110 |
| abstract_inverted_index.fully | 117 |
| abstract_inverted_index.graph | 6, 28 |
| abstract_inverted_index.learn | 20 |
| abstract_inverted_index.model | 7, 15 |
| abstract_inverted_index.under | 96 |
| abstract_inverted_index.11.40% | 105 |
| abstract_inverted_index.across | 68, 109 |
| abstract_inverted_index.adopts | 36 |
| abstract_inverted_index.edges. | 74 |
| abstract_inverted_index.graphs | 67, 80 |
| abstract_inverted_index.Average | 107 |
| abstract_inverted_index.average | 103 |
| abstract_inverted_index.capable | 42 |
| abstract_inverted_index.diverse | 69 |
| abstract_inverted_index.dynamic | 5, 66, 73 |
| abstract_inverted_index.graphs. | 111, 127 |
| abstract_inverted_index.pattern | 23 |
| abstract_inverted_index.trained | 63 |
| abstract_inverted_index.Compared | 91 |
| abstract_inverted_index.DyExpert | 35, 61, 83, 100 |
| abstract_inverted_index.achieves | 84, 101 |
| abstract_inverted_index.advanced | 94, 122 |
| abstract_inverted_index.baseline | 95 |
| abstract_inverted_index.domains, | 70 |
| abstract_inverted_index.evolving | 17 |
| abstract_inverted_index.modeling | 57 |
| abstract_inverted_index.parallel | 45 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.setting, | 99 |
| abstract_inverted_index.specific | 26 |
| abstract_inverted_index.training | 46 |
| abstract_inverted_index.DyExpert, | 3 |
| abstract_inverted_index.Extensive | 75 |
| abstract_inverted_index.Precision | 108 |
| abstract_inverted_index.baselines | 123 |
| abstract_inverted_index.evolution | 22, 56 |
| abstract_inverted_index.extensive | 65 |
| abstract_inverted_index.inference | 48 |
| abstract_inverted_index.processes | 18 |
| abstract_inverted_index.surpasses | 115 |
| abstract_inverted_index.untrained | 79, 126 |
| abstract_inverted_index.comprising | 71 |
| abstract_inverted_index.downstream | 27 |
| abstract_inverted_index.explicitly | 14 |
| abstract_inverted_index.historical | 16 |
| abstract_inverted_index.integrates | 54 |
| abstract_inverted_index.supervised | 118 |
| abstract_inverted_index.decode-only | 38 |
| abstract_inverted_index.demonstrate | 81 |
| abstract_inverted_index.efficiently | 44 |
| abstract_inverted_index.experiments | 76 |
| abstract_inverted_index.generation} | 52 |
| abstract_inverted_index.impressive, | 113 |
| abstract_inverted_index.improvement | 106 |
| abstract_inverted_index.performance | 86, 119 |
| abstract_inverted_index.prediction. | 11, 60, 90 |
| abstract_inverted_index.transformer | 39 |
| abstract_inverted_index.cross-domain | 9, 88 |
| abstract_inverted_index.predictions. | 34 |
| abstract_inverted_index.subsequently | 30 |
| abstract_inverted_index.pattern-specific | 32 |
| abstract_inverted_index.state-of-the-art | 85 |
| abstract_inverted_index.\textit{conditioned | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |