Enhancing Cybersecurity in Wireless Sensor Networks: AI Solutions to Simulated Attacks Article Swipe
Owing to the real time applications of Wireless Sensor Networks (WSNs) including: industrial automation and remote environment monitoring, WSNs have revolutionized today’s infrastructure. While implementing WSNs in strategic areas, security threats have become increasingly prevalent. Security enhancement in WSN by adopting advanced techniques in machine learning is the major focus of this research work. In an effort to discover possible use of Random Forest and Isolation Forest algorithms on them to detect and prevent the attacks, we look into depth of the attack. In this paper, the dataset is pulled from different repositories that are freely available to the public as an initial step followed by various preprocessing techniques. Data cleaning, feature selection, normalization, and categorical variable encoding have been applied as a part of preprocessing. We then observed a general increase in the detection of malicious flows together with the improvement of the tolerance to the simulated attacks. Moreover, we observed how ML enhances the security of WSNs with the combined use of ensemble learning and anomaly detections showing promising approaches and foundations for theoretical and experimental studies. The carried-out experiment proves the efficacy of the Random Forest Classifier (RFC), while maintaining a high level of accuracy, which is 99. 86% compared to 99. 72% before the attack.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.52783/jisem.v10i3s.373
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407180437
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407180437Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.52783/jisem.v10i3s.373Digital Object Identifier
- Title
-
Enhancing Cybersecurity in Wireless Sensor Networks: AI Solutions to Simulated AttacksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-15Full publication date if available
- Authors
-
Mohit AnguralaList of authors in order
- Landing page
-
https://doi.org/10.52783/jisem.v10i3s.373Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.52783/jisem.v10i3s.373Direct OA link when available
- Concepts
-
Computer security, Wireless sensor network, Computer science, Wireless, Computer network, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407180437 |
|---|---|
| doi | https://doi.org/10.52783/jisem.v10i3s.373 |
| ids.doi | https://doi.org/10.52783/jisem.v10i3s.373 |
| ids.openalex | https://openalex.org/W4407180437 |
| fwci | 0.0 |
| type | article |
| title | Enhancing Cybersecurity in Wireless Sensor Networks: AI Solutions to Simulated Attacks |
| biblio.issue | 3s |
| biblio.volume | 10 |
| biblio.last_page | 229 |
| biblio.first_page | 217 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9513000249862671 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C38652104 |
| concepts[0].level | 1 |
| concepts[0].score | 0.731569766998291 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[0].display_name | Computer security |
| concepts[1].id | https://openalex.org/C24590314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7004093527793884 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[1].display_name | Wireless sensor network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5916858911514282 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C555944384 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5055139064788818 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[3].display_name | Wireless |
| concepts[4].id | https://openalex.org/C31258907 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4058191776275635 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[4].display_name | Computer network |
| concepts[5].id | https://openalex.org/C76155785 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2713353931903839 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[5].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-security |
| keywords[0].score | 0.731569766998291 |
| keywords[0].display_name | Computer security |
| keywords[1].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[1].score | 0.7004093527793884 |
| keywords[1].display_name | Wireless sensor network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5916858911514282 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/wireless |
| keywords[3].score | 0.5055139064788818 |
| keywords[3].display_name | Wireless |
| keywords[4].id | https://openalex.org/keywords/computer-network |
| keywords[4].score | 0.4058191776275635 |
| keywords[4].display_name | Computer network |
| keywords[5].id | https://openalex.org/keywords/telecommunications |
| keywords[5].score | 0.2713353931903839 |
| keywords[5].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.52783/jisem.v10i3s.373 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737791640 |
| locations[0].source.issn | 2468-4376 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2468-4376 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Information Systems Engineering & Management |
| locations[0].source.host_organization | https://openalex.org/P4310320063 |
| locations[0].source.host_organization_name | Lectito Journals |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320063 |
| locations[0].source.host_organization_lineage_names | Lectito Journals |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Information Systems Engineering and Management |
| locations[0].landing_page_url | https://doi.org/10.52783/jisem.v10i3s.373 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5091116129 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9506-5864 |
| authorships[0].author.display_name | Mohit Angurala |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Mohit Angurala |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.52783/jisem.v10i3s.373 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Cybersecurity in Wireless Sensor Networks: AI Solutions to Simulated Attacks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9513000249862671 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.52783/jisem.v10i3s.373 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737791640 |
| best_oa_location.source.issn | 2468-4376 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2468-4376 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Information Systems Engineering & Management |
| best_oa_location.source.host_organization | https://openalex.org/P4310320063 |
| best_oa_location.source.host_organization_name | Lectito Journals |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320063 |
| best_oa_location.source.host_organization_lineage_names | Lectito Journals |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Information Systems Engineering and Management |
| best_oa_location.landing_page_url | https://doi.org/10.52783/jisem.v10i3s.373 |
| primary_location.id | doi:10.52783/jisem.v10i3s.373 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737791640 |
| primary_location.source.issn | 2468-4376 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2468-4376 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Information Systems Engineering & Management |
| primary_location.source.host_organization | https://openalex.org/P4310320063 |
| primary_location.source.host_organization_name | Lectito Journals |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320063 |
| primary_location.source.host_organization_lineage_names | Lectito Journals |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Information Systems Engineering and Management |
| primary_location.landing_page_url | https://doi.org/10.52783/jisem.v10i3s.373 |
| publication_date | 2025-01-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 122, 129, 193 |
| abstract_inverted_index.In | 54, 83 |
| abstract_inverted_index.ML | 153 |
| abstract_inverted_index.We | 126 |
| abstract_inverted_index.an | 55, 101 |
| abstract_inverted_index.as | 100, 121 |
| abstract_inverted_index.by | 39, 105 |
| abstract_inverted_index.in | 26, 37, 43, 132 |
| abstract_inverted_index.is | 46, 88, 199 |
| abstract_inverted_index.of | 6, 50, 61, 80, 124, 135, 142, 157, 163, 185, 196 |
| abstract_inverted_index.on | 68 |
| abstract_inverted_index.to | 1, 57, 70, 97, 145, 203 |
| abstract_inverted_index.we | 76, 150 |
| abstract_inverted_index.72% | 205 |
| abstract_inverted_index.86% | 201 |
| abstract_inverted_index.99. | 200, 204 |
| abstract_inverted_index.The | 179 |
| abstract_inverted_index.WSN | 38 |
| abstract_inverted_index.and | 14, 64, 72, 114, 166, 172, 176 |
| abstract_inverted_index.are | 94 |
| abstract_inverted_index.for | 174 |
| abstract_inverted_index.how | 152 |
| abstract_inverted_index.the | 2, 47, 74, 81, 86, 98, 133, 140, 143, 146, 155, 160, 183, 186, 207 |
| abstract_inverted_index.use | 60, 162 |
| abstract_inverted_index.Data | 109 |
| abstract_inverted_index.WSNs | 18, 25, 158 |
| abstract_inverted_index.been | 119 |
| abstract_inverted_index.from | 90 |
| abstract_inverted_index.have | 19, 31, 118 |
| abstract_inverted_index.high | 194 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.look | 77 |
| abstract_inverted_index.part | 123 |
| abstract_inverted_index.real | 3 |
| abstract_inverted_index.step | 103 |
| abstract_inverted_index.that | 93 |
| abstract_inverted_index.them | 69 |
| abstract_inverted_index.then | 127 |
| abstract_inverted_index.this | 51, 84 |
| abstract_inverted_index.time | 4 |
| abstract_inverted_index.with | 139, 159 |
| abstract_inverted_index.Owing | 0 |
| abstract_inverted_index.While | 23 |
| abstract_inverted_index.depth | 79 |
| abstract_inverted_index.flows | 137 |
| abstract_inverted_index.focus | 49 |
| abstract_inverted_index.level | 195 |
| abstract_inverted_index.major | 48 |
| abstract_inverted_index.which | 198 |
| abstract_inverted_index.while | 191 |
| abstract_inverted_index.work. | 53 |
| abstract_inverted_index.(RFC), | 190 |
| abstract_inverted_index.(WSNs) | 10 |
| abstract_inverted_index.Forest | 63, 66, 188 |
| abstract_inverted_index.Random | 62, 187 |
| abstract_inverted_index.Sensor | 8 |
| abstract_inverted_index.areas, | 28 |
| abstract_inverted_index.become | 32 |
| abstract_inverted_index.before | 206 |
| abstract_inverted_index.detect | 71 |
| abstract_inverted_index.effort | 56 |
| abstract_inverted_index.freely | 95 |
| abstract_inverted_index.paper, | 85 |
| abstract_inverted_index.proves | 182 |
| abstract_inverted_index.public | 99 |
| abstract_inverted_index.pulled | 89 |
| abstract_inverted_index.remote | 15 |
| abstract_inverted_index.anomaly | 167 |
| abstract_inverted_index.applied | 120 |
| abstract_inverted_index.attack. | 82, 208 |
| abstract_inverted_index.dataset | 87 |
| abstract_inverted_index.feature | 111 |
| abstract_inverted_index.general | 130 |
| abstract_inverted_index.initial | 102 |
| abstract_inverted_index.machine | 44 |
| abstract_inverted_index.prevent | 73 |
| abstract_inverted_index.showing | 169 |
| abstract_inverted_index.threats | 30 |
| abstract_inverted_index.various | 106 |
| abstract_inverted_index.Networks | 9 |
| abstract_inverted_index.Security | 35 |
| abstract_inverted_index.Wireless | 7 |
| abstract_inverted_index.adopting | 40 |
| abstract_inverted_index.advanced | 41 |
| abstract_inverted_index.attacks, | 75 |
| abstract_inverted_index.attacks. | 148 |
| abstract_inverted_index.combined | 161 |
| abstract_inverted_index.compared | 202 |
| abstract_inverted_index.discover | 58 |
| abstract_inverted_index.efficacy | 184 |
| abstract_inverted_index.encoding | 117 |
| abstract_inverted_index.enhances | 154 |
| abstract_inverted_index.ensemble | 164 |
| abstract_inverted_index.followed | 104 |
| abstract_inverted_index.increase | 131 |
| abstract_inverted_index.learning | 45, 165 |
| abstract_inverted_index.observed | 128, 151 |
| abstract_inverted_index.possible | 59 |
| abstract_inverted_index.research | 52 |
| abstract_inverted_index.security | 29, 156 |
| abstract_inverted_index.studies. | 178 |
| abstract_inverted_index.together | 138 |
| abstract_inverted_index.variable | 116 |
| abstract_inverted_index.Isolation | 65 |
| abstract_inverted_index.Moreover, | 149 |
| abstract_inverted_index.accuracy, | 197 |
| abstract_inverted_index.available | 96 |
| abstract_inverted_index.cleaning, | 110 |
| abstract_inverted_index.detection | 134 |
| abstract_inverted_index.different | 91 |
| abstract_inverted_index.malicious | 136 |
| abstract_inverted_index.promising | 170 |
| abstract_inverted_index.simulated | 147 |
| abstract_inverted_index.strategic | 27 |
| abstract_inverted_index.today’s | 21 |
| abstract_inverted_index.tolerance | 144 |
| abstract_inverted_index.Classifier | 189 |
| abstract_inverted_index.algorithms | 67 |
| abstract_inverted_index.approaches | 171 |
| abstract_inverted_index.automation | 13 |
| abstract_inverted_index.detections | 168 |
| abstract_inverted_index.experiment | 181 |
| abstract_inverted_index.including: | 11 |
| abstract_inverted_index.industrial | 12 |
| abstract_inverted_index.prevalent. | 34 |
| abstract_inverted_index.selection, | 112 |
| abstract_inverted_index.techniques | 42 |
| abstract_inverted_index.carried-out | 180 |
| abstract_inverted_index.categorical | 115 |
| abstract_inverted_index.enhancement | 36 |
| abstract_inverted_index.environment | 16 |
| abstract_inverted_index.foundations | 173 |
| abstract_inverted_index.improvement | 141 |
| abstract_inverted_index.maintaining | 192 |
| abstract_inverted_index.monitoring, | 17 |
| abstract_inverted_index.techniques. | 108 |
| abstract_inverted_index.theoretical | 175 |
| abstract_inverted_index.applications | 5 |
| abstract_inverted_index.experimental | 177 |
| abstract_inverted_index.implementing | 24 |
| abstract_inverted_index.increasingly | 33 |
| abstract_inverted_index.repositories | 92 |
| abstract_inverted_index.preprocessing | 107 |
| abstract_inverted_index.normalization, | 113 |
| abstract_inverted_index.preprocessing. | 125 |
| abstract_inverted_index.revolutionized | 20 |
| abstract_inverted_index.infrastructure. | 22 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5091116129 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.03192809 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |