Enhancing Dimensionality Reduction in Driving Behavior Learning: Integrating SENet with VAE Article Swipe
Yuta Uehara
,
Susumu Matsumae
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.15803/ijnc.15.2_138
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.15803/ijnc.15.2_138
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15803/ijnc.15.2_138
- OA Status
- diamond
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412965453
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412965453Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15803/ijnc.15.2_138Digital Object Identifier
- Title
-
Enhancing Dimensionality Reduction in Driving Behavior Learning: Integrating SENet with VAEWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yuta Uehara, Susumu MatsumaeList of authors in order
- Landing page
-
https://doi.org/10.15803/ijnc.15.2_138Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.15803/ijnc.15.2_138Direct OA link when available
- Concepts
-
Computer science, Dimensionality reduction, Reduction (mathematics), Curse of dimensionality, Artificial intelligence, Machine learning, Geometry, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412965453 |
|---|---|
| doi | https://doi.org/10.15803/ijnc.15.2_138 |
| ids.doi | https://doi.org/10.15803/ijnc.15.2_138 |
| ids.openalex | https://openalex.org/W4412965453 |
| fwci | 0.0 |
| type | article |
| title | Enhancing Dimensionality Reduction in Driving Behavior Learning: Integrating SENet with VAE |
| biblio.issue | 2 |
| biblio.volume | 15 |
| biblio.last_page | 152 |
| biblio.first_page | 138 |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8408046960830688 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C70518039 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6791284084320068 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[1].display_name | Dimensionality reduction |
| concepts[2].id | https://openalex.org/C111335779 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6092962622642517 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[2].display_name | Reduction (mathematics) |
| concepts[3].id | https://openalex.org/C111030470 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46399566531181335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[3].display_name | Curse of dimensionality |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.42579710483551025 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3744511008262634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C2524010 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[6].display_name | Geometry |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8408046960830688 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[1].score | 0.6791284084320068 |
| keywords[1].display_name | Dimensionality reduction |
| keywords[2].id | https://openalex.org/keywords/reduction |
| keywords[2].score | 0.6092962622642517 |
| keywords[2].display_name | Reduction (mathematics) |
| keywords[3].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[3].score | 0.46399566531181335 |
| keywords[3].display_name | Curse of dimensionality |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.42579710483551025 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3744511008262634 |
| keywords[5].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.15803/ijnc.15.2_138 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764661160 |
| locations[0].source.issn | 2185-2839, 2185-2847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2185-2839 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Networking and Computing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Networking and Computing |
| locations[0].landing_page_url | https://doi.org/10.15803/ijnc.15.2_138 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113112228 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yuta Uehara |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177136067 |
| authorships[0].affiliations[0].raw_affiliation_string | Saga University |
| authorships[0].institutions[0].id | https://openalex.org/I177136067 |
| authorships[0].institutions[0].ror | https://ror.org/04f4wg107 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177136067 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Saga University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuta Uehara |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Saga University |
| authorships[1].author.id | https://openalex.org/A5080164147 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6024-343X |
| authorships[1].author.display_name | Susumu Matsumae |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177136067 |
| authorships[1].affiliations[0].raw_affiliation_string | Saga University |
| authorships[1].institutions[0].id | https://openalex.org/I177136067 |
| authorships[1].institutions[0].ror | https://ror.org/04f4wg107 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177136067 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Saga University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Susumu Matsumae |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Saga University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.15803/ijnc.15.2_138 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Dimensionality Reduction in Driving Behavior Learning: Integrating SENet with VAE |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W1995622179, https://openalex.org/W1484111231, https://openalex.org/W4391160746, https://openalex.org/W1552543208, https://openalex.org/W2074396517, https://openalex.org/W2166963679, https://openalex.org/W2187269125, https://openalex.org/W1641615907 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.15803/ijnc.15.2_138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764661160 |
| best_oa_location.source.issn | 2185-2839, 2185-2847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2185-2839 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Networking and Computing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Networking and Computing |
| best_oa_location.landing_page_url | https://doi.org/10.15803/ijnc.15.2_138 |
| primary_location.id | doi:10.15803/ijnc.15.2_138 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764661160 |
| primary_location.source.issn | 2185-2839, 2185-2847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2185-2839 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Networking and Computing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Networking and Computing |
| primary_location.landing_page_url | https://doi.org/10.15803/ijnc.15.2_138 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3030656010, https://openalex.org/W2968983352, https://openalex.org/W3093511015, https://openalex.org/W4391529299, https://openalex.org/W2752782242, https://openalex.org/W4405935116, https://openalex.org/W4391033327, https://openalex.org/W4283327787, https://openalex.org/W3216772467 |
| referenced_works_count | 9 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.14848443 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |