Enhancing estuary salinity prediction: A Machine Learning and Deep Learning based approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.acags.2024.100173
As critical transitional ecosystems, estuaries are facing the increasingly urgent threat of salt wedge intrusion, which impacts their ecological balance as well as human-dependent activities. Accurately predicting estuary salinity is essential for water resource management, ecosystem preservation, and for ensuring sustainable development along coastlines. In this study, we investigated the application of different machine learning and deep learning models to predict salinity levels within estuarine environments. Leveraging different techniques, including Random Forest, Least-Squares Boosting, Artificial Neural Network and Long Short-Term Memory networks, the aim was to enhance the predictive accuracy in order to better understand the complex interplay of factors influencing estuarine salinity dynamics. The Po River estuary (Po di Goro), which is one of the main hotspots of salt wedge intrusion, was selected as the study area. Comparative analyses of machine learning models with the state-of-the-art physics-based Estuary box model (EBM) and Hybrid-EBM models were conducted to assess model performances. The results highlighted an improvement in the machine learning performance, with a reduction in the RMSE (from 4.22 psu obtained by physics-based EBM to 2.80 psu obtained by LSBoost-Season) and an increase in the R2 score (from 0.67 obtained by physics-based EBM to 0.85 by LSBoost-Season), computed on the test set. We also explored the impact of different variables and their contributions to the predictive capabilities of the models. Overall, this study demonstrates the feasibility and effectiveness of ML-based approaches for estimating salinity levels due to salt wedge intrusion within estuaries. The insights obtained from this study could significantly support smart management strategies, not only in the Po River estuary, but also in other location.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.acags.2024.100173
- OA Status
- gold
- Cited By
- 18
- References
- 72
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399768588
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399768588Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.acags.2024.100173Digital Object Identifier
- Title
-
Enhancing estuary salinity prediction: A Machine Learning and Deep Learning based approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-18Full publication date if available
- Authors
-
Leonardo Saccotelli, Giorgia Verri, Alessandro De Lorenzis, Carla Cherubini, Rocco Caccioppoli, Giovanni Coppini, Rosalia MagliettaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.acags.2024.100173Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.acags.2024.100173Direct OA link when available
- Concepts
-
Estuary, Deep learning, Artificial intelligence, Salinity, Computer science, Machine learning, Oceanography, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
72Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399768588 |
|---|---|
| doi | https://doi.org/10.1016/j.acags.2024.100173 |
| ids.doi | https://doi.org/10.1016/j.acags.2024.100173 |
| ids.openalex | https://openalex.org/W4399768588 |
| fwci | 41.85939235 |
| type | article |
| title | Enhancing estuary salinity prediction: A Machine Learning and Deep Learning based approach |
| biblio.issue | |
| biblio.volume | 23 |
| biblio.last_page | 100173 |
| biblio.first_page | 100173 |
| topics[0].id | https://openalex.org/T11698 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9898999929428101 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Underwater Acoustics Research |
| topics[1].id | https://openalex.org/T10255 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Oceanographic and Atmospheric Processes |
| topics[2].id | https://openalex.org/T11490 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9592000246047974 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C88160329 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7605367302894592 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q47053 |
| concepts[0].display_name | Estuary |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5332719087600708 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5268039703369141 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C129513315 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5166738033294678 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q179615 |
| concepts[3].display_name | Salinity |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5128767490386963 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45674389600753784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C111368507 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2737612724304199 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[6].display_name | Oceanography |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.18122780323028564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/estuary |
| keywords[0].score | 0.7605367302894592 |
| keywords[0].display_name | Estuary |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.5332719087600708 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5268039703369141 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/salinity |
| keywords[3].score | 0.5166738033294678 |
| keywords[3].display_name | Salinity |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5128767490386963 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.45674389600753784 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/oceanography |
| keywords[6].score | 0.2737612724304199 |
| keywords[6].display_name | Oceanography |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.18122780323028564 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1016/j.acags.2024.100173 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210236406 |
| locations[0].source.issn | 2590-1974 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2590-1974 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Computing and Geosciences |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Computing and Geosciences |
| locations[0].landing_page_url | https://doi.org/10.1016/j.acags.2024.100173 |
| locations[1].id | pmh:oai:doaj.org/article:c097fc55b1c4432f8a5e8ceaa6ee609a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Computing and Geosciences, Vol 23, Iss , Pp 100173- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/c097fc55b1c4432f8a5e8ceaa6ee609a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5027728592 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-3631-0427 |
| authorships[0].author.display_name | Leonardo Saccotelli |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[0].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[0].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Leonardo Saccotelli |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[1].author.id | https://openalex.org/A5071336612 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7561-618X |
| authorships[1].author.display_name | Giorgia Verri |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[1].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[1].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Giorgia Verri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[2].author.id | https://openalex.org/A5067333030 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9561-1327 |
| authorships[2].author.display_name | Alessandro De Lorenzis |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[2].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[2].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alessandro De Lorenzis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[3].author.id | https://openalex.org/A5020560681 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9955-864X |
| authorships[3].author.display_name | Carla Cherubini |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[3].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I5561750 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Bari, Bari 70125, Italy |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210146308 |
| authorships[3].affiliations[2].raw_affiliation_string | Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, CNR-STIIMA, Bari 70126, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[3].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[3].institutions[1].id | https://openalex.org/I4210146308 |
| authorships[3].institutions[1].ror | https://ror.org/051t1q308 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210146308, https://openalex.org/I4210155236 |
| authorships[3].institutions[1].country_code | IT |
| authorships[3].institutions[1].display_name | Institute of Intelligent Systems for Automation |
| authorships[3].institutions[2].id | https://openalex.org/I5561750 |
| authorships[3].institutions[2].ror | https://ror.org/027ynra39 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I5561750 |
| authorships[3].institutions[2].country_code | IT |
| authorships[3].institutions[2].display_name | University of Bari Aldo Moro |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Carla Cherubini |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy, Department of Computer Science, University of Bari, Bari 70125, Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, CNR-STIIMA, Bari 70126, Italy |
| authorships[4].author.id | https://openalex.org/A5035020377 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Rocco Caccioppoli |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[4].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[4].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rocco Caccioppoli |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[5].author.id | https://openalex.org/A5070674308 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3664-3983 |
| authorships[5].author.display_name | Giovanni Coppini |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[5].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[5].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[5].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Giovanni Coppini |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[6].author.id | https://openalex.org/A5030870666 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8580-4806 |
| authorships[6].author.display_name | Rosalia Maglietta |
| authorships[6].countries | IT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210111827 |
| authorships[6].affiliations[0].raw_affiliation_string | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210146308 |
| authorships[6].affiliations[1].raw_affiliation_string | Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, CNR-STIIMA, Bari 70126, Italy |
| authorships[6].institutions[0].id | https://openalex.org/I4210111827 |
| authorships[6].institutions[0].ror | https://ror.org/01tf11a61 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210111827 |
| authorships[6].institutions[0].country_code | IT |
| authorships[6].institutions[0].display_name | CMCC Foundation - Euro-Mediterranean Center on Climate Change |
| authorships[6].institutions[1].id | https://openalex.org/I4210146308 |
| authorships[6].institutions[1].ror | https://ror.org/051t1q308 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210146308, https://openalex.org/I4210155236 |
| authorships[6].institutions[1].country_code | IT |
| authorships[6].institutions[1].display_name | Institute of Intelligent Systems for Automation |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Rosalia Maglietta |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | CMCC Foundation - Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, CNR-STIIMA, Bari 70126, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.acags.2024.100173 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing estuary salinity prediction: A Machine Learning and Deep Learning based approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11698 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9898999929428101 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Underwater Acoustics Research |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3046775127, https://openalex.org/W3082895349 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.acags.2024.100173 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210236406 |
| best_oa_location.source.issn | 2590-1974 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2590-1974 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Computing and Geosciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Computing and Geosciences |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.acags.2024.100173 |
| primary_location.id | doi:10.1016/j.acags.2024.100173 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210236406 |
| primary_location.source.issn | 2590-1974 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2590-1974 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Computing and Geosciences |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Computing and Geosciences |
| primary_location.landing_page_url | https://doi.org/10.1016/j.acags.2024.100173 |
| publication_date | 2024-06-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2126154792, https://openalex.org/W3122292998, https://openalex.org/W2548061247, https://openalex.org/W1964965929, https://openalex.org/W2911964244, https://openalex.org/W2793135904, https://openalex.org/W3217533538, https://openalex.org/W2997101539, https://openalex.org/W4311778818, https://openalex.org/W4313421108, https://openalex.org/W2014538668, https://openalex.org/W2173246082, https://openalex.org/W6721023998, https://openalex.org/W1678356000, https://openalex.org/W6796823448, https://openalex.org/W4292634759, https://openalex.org/W1940482272, https://openalex.org/W6842948419, https://openalex.org/W2064675550, https://openalex.org/W3135149977, https://openalex.org/W6860806695, https://openalex.org/W2041282815, https://openalex.org/W2788465381, https://openalex.org/W2045952723, https://openalex.org/W3137178500, https://openalex.org/W6850837094, https://openalex.org/W4289538646, https://openalex.org/W2760745191, https://openalex.org/W4320728359, https://openalex.org/W6773806195, https://openalex.org/W2897955170, https://openalex.org/W3216381531, https://openalex.org/W6799434988, https://openalex.org/W4308801569, https://openalex.org/W4283575846, https://openalex.org/W1951318947, https://openalex.org/W2600442184, https://openalex.org/W6812583754, https://openalex.org/W2158143121, https://openalex.org/W6859066483, https://openalex.org/W4367175488, https://openalex.org/W4280633546, https://openalex.org/W3161245545, https://openalex.org/W6632327877, https://openalex.org/W4396224510, https://openalex.org/W6790775672, https://openalex.org/W3005947021, https://openalex.org/W6876815351, https://openalex.org/W3115445300, https://openalex.org/W4297376210, https://openalex.org/W1522301498, https://openalex.org/W4301014524, https://openalex.org/W4322765700, https://openalex.org/W3170448947, https://openalex.org/W2518732252, https://openalex.org/W4391011770, https://openalex.org/W2271840356, https://openalex.org/W4226315839, https://openalex.org/W1987497047, https://openalex.org/W2131241448, https://openalex.org/W1701825639, https://openalex.org/W2171033594, https://openalex.org/W2172008260, https://openalex.org/W4214611837, https://openalex.org/W585200530, https://openalex.org/W2474417919, https://openalex.org/W2342192033, https://openalex.org/W3134419185, https://openalex.org/W3187321735, https://openalex.org/W4402737673, https://openalex.org/W2117561707, https://openalex.org/W4237154343 |
| referenced_works_count | 72 |
| abstract_inverted_index.a | 162 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 44 |
| abstract_inverted_index.Po | 105, 258 |
| abstract_inverted_index.R2 | 185 |
| abstract_inverted_index.We | 202 |
| abstract_inverted_index.an | 154, 181 |
| abstract_inverted_index.as | 20, 22, 124 |
| abstract_inverted_index.by | 171, 178, 190, 195 |
| abstract_inverted_index.di | 109 |
| abstract_inverted_index.in | 90, 156, 164, 183, 256, 263 |
| abstract_inverted_index.is | 29, 112 |
| abstract_inverted_index.of | 11, 51, 98, 114, 118, 130, 207, 217, 228 |
| abstract_inverted_index.on | 198 |
| abstract_inverted_index.to | 59, 85, 92, 147, 174, 193, 213, 236 |
| abstract_inverted_index.we | 47 |
| abstract_inverted_index.(Po | 108 |
| abstract_inverted_index.EBM | 173, 192 |
| abstract_inverted_index.The | 104, 151, 242 |
| abstract_inverted_index.aim | 83 |
| abstract_inverted_index.and | 37, 55, 77, 142, 180, 210, 226 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.box | 139 |
| abstract_inverted_index.but | 261 |
| abstract_inverted_index.due | 235 |
| abstract_inverted_index.for | 31, 38, 231 |
| abstract_inverted_index.not | 254 |
| abstract_inverted_index.one | 113 |
| abstract_inverted_index.psu | 169, 176 |
| abstract_inverted_index.the | 7, 49, 82, 87, 95, 115, 125, 135, 157, 165, 184, 199, 205, 214, 218, 224, 257 |
| abstract_inverted_index.was | 84, 122 |
| abstract_inverted_index.0.67 | 188 |
| abstract_inverted_index.0.85 | 194 |
| abstract_inverted_index.2.80 | 175 |
| abstract_inverted_index.4.22 | 168 |
| abstract_inverted_index.Long | 78 |
| abstract_inverted_index.RMSE | 166 |
| abstract_inverted_index.also | 203, 262 |
| abstract_inverted_index.deep | 56 |
| abstract_inverted_index.from | 245 |
| abstract_inverted_index.main | 116 |
| abstract_inverted_index.only | 255 |
| abstract_inverted_index.salt | 12, 119, 237 |
| abstract_inverted_index.set. | 201 |
| abstract_inverted_index.test | 200 |
| abstract_inverted_index.this | 45, 221, 246 |
| abstract_inverted_index.well | 21 |
| abstract_inverted_index.were | 145 |
| abstract_inverted_index.with | 134, 161 |
| abstract_inverted_index.(EBM) | 141 |
| abstract_inverted_index.(from | 167, 187 |
| abstract_inverted_index.River | 106, 259 |
| abstract_inverted_index.along | 42 |
| abstract_inverted_index.area. | 127 |
| abstract_inverted_index.could | 248 |
| abstract_inverted_index.model | 140, 149 |
| abstract_inverted_index.order | 91 |
| abstract_inverted_index.other | 264 |
| abstract_inverted_index.score | 186 |
| abstract_inverted_index.smart | 251 |
| abstract_inverted_index.study | 126, 222, 247 |
| abstract_inverted_index.their | 17, 211 |
| abstract_inverted_index.water | 32 |
| abstract_inverted_index.wedge | 13, 120, 238 |
| abstract_inverted_index.which | 15, 111 |
| abstract_inverted_index.Goro), | 110 |
| abstract_inverted_index.Memory | 80 |
| abstract_inverted_index.Neural | 75 |
| abstract_inverted_index.Random | 70 |
| abstract_inverted_index.assess | 148 |
| abstract_inverted_index.better | 93 |
| abstract_inverted_index.facing | 6 |
| abstract_inverted_index.impact | 206 |
| abstract_inverted_index.levels | 62, 234 |
| abstract_inverted_index.models | 58, 133, 144 |
| abstract_inverted_index.study, | 46 |
| abstract_inverted_index.threat | 10 |
| abstract_inverted_index.urgent | 9 |
| abstract_inverted_index.within | 63, 240 |
| abstract_inverted_index.Estuary | 138 |
| abstract_inverted_index.Forest, | 71 |
| abstract_inverted_index.Network | 76 |
| abstract_inverted_index.balance | 19 |
| abstract_inverted_index.complex | 96 |
| abstract_inverted_index.enhance | 86 |
| abstract_inverted_index.estuary | 27, 107 |
| abstract_inverted_index.factors | 99 |
| abstract_inverted_index.impacts | 16 |
| abstract_inverted_index.machine | 53, 131, 158 |
| abstract_inverted_index.models. | 219 |
| abstract_inverted_index.predict | 60 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.support | 250 |
| abstract_inverted_index.ML-based | 229 |
| abstract_inverted_index.Overall, | 220 |
| abstract_inverted_index.accuracy | 89 |
| abstract_inverted_index.analyses | 129 |
| abstract_inverted_index.computed | 197 |
| abstract_inverted_index.critical | 1 |
| abstract_inverted_index.ensuring | 39 |
| abstract_inverted_index.estuary, | 260 |
| abstract_inverted_index.explored | 204 |
| abstract_inverted_index.hotspots | 117 |
| abstract_inverted_index.increase | 182 |
| abstract_inverted_index.insights | 243 |
| abstract_inverted_index.learning | 54, 57, 132, 159 |
| abstract_inverted_index.obtained | 170, 177, 189, 244 |
| abstract_inverted_index.resource | 33 |
| abstract_inverted_index.salinity | 28, 61, 102, 233 |
| abstract_inverted_index.selected | 123 |
| abstract_inverted_index.Boosting, | 73 |
| abstract_inverted_index.conducted | 146 |
| abstract_inverted_index.different | 52, 67, 208 |
| abstract_inverted_index.dynamics. | 103 |
| abstract_inverted_index.ecosystem | 35 |
| abstract_inverted_index.essential | 30 |
| abstract_inverted_index.estuaries | 4 |
| abstract_inverted_index.estuarine | 64, 101 |
| abstract_inverted_index.including | 69 |
| abstract_inverted_index.interplay | 97 |
| abstract_inverted_index.intrusion | 239 |
| abstract_inverted_index.location. | 265 |
| abstract_inverted_index.networks, | 81 |
| abstract_inverted_index.reduction | 163 |
| abstract_inverted_index.variables | 209 |
| abstract_inverted_index.Accurately | 25 |
| abstract_inverted_index.Artificial | 74 |
| abstract_inverted_index.Hybrid-EBM | 143 |
| abstract_inverted_index.Leveraging | 66 |
| abstract_inverted_index.Short-Term | 79 |
| abstract_inverted_index.approaches | 230 |
| abstract_inverted_index.ecological | 18 |
| abstract_inverted_index.estimating | 232 |
| abstract_inverted_index.estuaries. | 241 |
| abstract_inverted_index.intrusion, | 14, 121 |
| abstract_inverted_index.management | 252 |
| abstract_inverted_index.predicting | 26 |
| abstract_inverted_index.predictive | 88, 215 |
| abstract_inverted_index.understand | 94 |
| abstract_inverted_index.Comparative | 128 |
| abstract_inverted_index.activities. | 24 |
| abstract_inverted_index.application | 50 |
| abstract_inverted_index.coastlines. | 43 |
| abstract_inverted_index.development | 41 |
| abstract_inverted_index.ecosystems, | 3 |
| abstract_inverted_index.feasibility | 225 |
| abstract_inverted_index.highlighted | 153 |
| abstract_inverted_index.improvement | 155 |
| abstract_inverted_index.influencing | 100 |
| abstract_inverted_index.management, | 34 |
| abstract_inverted_index.strategies, | 253 |
| abstract_inverted_index.sustainable | 40 |
| abstract_inverted_index.techniques, | 68 |
| abstract_inverted_index.capabilities | 216 |
| abstract_inverted_index.demonstrates | 223 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.investigated | 48 |
| abstract_inverted_index.performance, | 160 |
| abstract_inverted_index.transitional | 2 |
| abstract_inverted_index.Least-Squares | 72 |
| abstract_inverted_index.contributions | 212 |
| abstract_inverted_index.effectiveness | 227 |
| abstract_inverted_index.environments. | 65 |
| abstract_inverted_index.performances. | 150 |
| abstract_inverted_index.physics-based | 137, 172, 191 |
| abstract_inverted_index.preservation, | 36 |
| abstract_inverted_index.significantly | 249 |
| abstract_inverted_index.LSBoost-Season) | 179 |
| abstract_inverted_index.human-dependent | 23 |
| abstract_inverted_index.LSBoost-Season), | 196 |
| abstract_inverted_index.state-of-the-art | 136 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5030870666 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210111827, https://openalex.org/I4210146308 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.99013158 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |