Enhancing Financial Named Entity Recognition through Adaptive Few-Shot Learning: A Comparative Study of Pre-trained Language Models Article Swipe
This research article explores the application of machine learning techniques in automated assessment systems within educational contexts. The study investigates how machine learning algorithms can enhance the objectivity and efficiency of educational evaluations, addressing the challenges of traditional assessment methods. Through a comprehensive literature review, analysis of current technologies, and case studies, this research demonstrates the potential of machine learning to revolutionize assessment practices. The findings indicate significant improvements in assessment accuracy, consistency, and time efficiency when utilizing machine learning-based automated systems. However, the study also highlights important considerations regarding ethical implications, potential biases, and the need for human oversight. This research contributes to the growing body of knowledge on educational technology and provides valuable insights for educators, policymakers, and technology developers in the field of educational assessment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.69987/jacs.2024.40702
- https://scipublication.com/index.php/JACS/article/download/238/218
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4417073872
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417073872Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.69987/jacs.2024.40702Digital Object Identifier
- Title
-
Enhancing Financial Named Entity Recognition through Adaptive Few-Shot Learning: A Comparative Study of Pre-trained Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-08Full publication date if available
- Authors
-
Ziyi WangList of authors in order
- Landing page
-
https://doi.org/10.69987/jacs.2024.40702Publisher landing page
- PDF URL
-
https://scipublication.com/index.php/JACS/article/download/238/218Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://scipublication.com/index.php/JACS/article/download/238/218Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417073872 |
|---|---|
| doi | https://doi.org/10.69987/jacs.2024.40702 |
| ids.doi | https://doi.org/10.69987/jacs.2024.40702 |
| ids.openalex | https://openalex.org/W4417073872 |
| fwci | |
| type | article |
| title | Enhancing Financial Named Entity Recognition through Adaptive Few-Shot Learning: A Comparative Study of Pre-trained Language Models |
| biblio.issue | 7 |
| biblio.volume | 4 |
| biblio.last_page | 25 |
| biblio.first_page | 13 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.69987/jacs.2024.40702 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407048776 |
| locations[0].source.issn | 3066-3962 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3066-3962 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Advanced Computing Systems |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://scipublication.com/index.php/JACS/article/download/238/218 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.69987/jacs.2024.40702 |
| locations[1].id | pmh:oai:doaj.org/article:523319700d5440ff8e70f9442bebc136 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Advanced Computing Systems, Vol 4, Iss 7 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/523319700d5440ff8e70f9442bebc136 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100441389 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4410-6889 |
| authorships[0].author.display_name | Ziyi Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziyi Wang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://scipublication.com/index.php/JACS/article/download/238/218 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Financial Named Entity Recognition through Adaptive Few-Shot Learning: A Comparative Study of Pre-trained Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T23:40:59.601060 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.69987/jacs.2024.40702 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407048776 |
| best_oa_location.source.issn | 3066-3962 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3066-3962 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Advanced Computing Systems |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://scipublication.com/index.php/JACS/article/download/238/218 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.69987/jacs.2024.40702 |
| primary_location.id | doi:10.69987/jacs.2024.40702 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407048776 |
| primary_location.source.issn | 3066-3962 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3066-3962 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Advanced Computing Systems |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://scipublication.com/index.php/JACS/article/download/238/218 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.69987/jacs.2024.40702 |
| publication_date | 2024-07-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41 |
| abstract_inverted_index.in | 10, 69, 122 |
| abstract_inverted_index.of | 6, 30, 36, 46, 57, 107, 125 |
| abstract_inverted_index.on | 109 |
| abstract_inverted_index.to | 60, 103 |
| abstract_inverted_index.The | 17, 64 |
| abstract_inverted_index.and | 28, 49, 73, 94, 112, 119 |
| abstract_inverted_index.can | 24 |
| abstract_inverted_index.for | 97, 116 |
| abstract_inverted_index.how | 20 |
| abstract_inverted_index.the | 4, 26, 34, 55, 83, 95, 104, 123 |
| abstract_inverted_index.This | 0, 100 |
| abstract_inverted_index.also | 85 |
| abstract_inverted_index.body | 106 |
| abstract_inverted_index.case | 50 |
| abstract_inverted_index.need | 96 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.time | 74 |
| abstract_inverted_index.when | 76 |
| abstract_inverted_index.field | 124 |
| abstract_inverted_index.human | 98 |
| abstract_inverted_index.study | 18, 84 |
| abstract_inverted_index.within | 14 |
| abstract_inverted_index.Through | 40 |
| abstract_inverted_index.article | 2 |
| abstract_inverted_index.biases, | 93 |
| abstract_inverted_index.current | 47 |
| abstract_inverted_index.enhance | 25 |
| abstract_inverted_index.ethical | 90 |
| abstract_inverted_index.growing | 105 |
| abstract_inverted_index.machine | 7, 21, 58, 78 |
| abstract_inverted_index.review, | 44 |
| abstract_inverted_index.systems | 13 |
| abstract_inverted_index.However, | 82 |
| abstract_inverted_index.analysis | 45 |
| abstract_inverted_index.explores | 3 |
| abstract_inverted_index.findings | 65 |
| abstract_inverted_index.indicate | 66 |
| abstract_inverted_index.insights | 115 |
| abstract_inverted_index.learning | 8, 22, 59 |
| abstract_inverted_index.methods. | 39 |
| abstract_inverted_index.provides | 113 |
| abstract_inverted_index.research | 1, 53, 101 |
| abstract_inverted_index.studies, | 51 |
| abstract_inverted_index.systems. | 81 |
| abstract_inverted_index.valuable | 114 |
| abstract_inverted_index.accuracy, | 71 |
| abstract_inverted_index.automated | 11, 80 |
| abstract_inverted_index.contexts. | 16 |
| abstract_inverted_index.important | 87 |
| abstract_inverted_index.knowledge | 108 |
| abstract_inverted_index.potential | 56, 92 |
| abstract_inverted_index.regarding | 89 |
| abstract_inverted_index.utilizing | 77 |
| abstract_inverted_index.addressing | 33 |
| abstract_inverted_index.algorithms | 23 |
| abstract_inverted_index.assessment | 12, 38, 62, 70 |
| abstract_inverted_index.challenges | 35 |
| abstract_inverted_index.developers | 121 |
| abstract_inverted_index.educators, | 117 |
| abstract_inverted_index.efficiency | 29, 75 |
| abstract_inverted_index.highlights | 86 |
| abstract_inverted_index.literature | 43 |
| abstract_inverted_index.oversight. | 99 |
| abstract_inverted_index.practices. | 63 |
| abstract_inverted_index.techniques | 9 |
| abstract_inverted_index.technology | 111, 120 |
| abstract_inverted_index.application | 5 |
| abstract_inverted_index.assessment. | 127 |
| abstract_inverted_index.contributes | 102 |
| abstract_inverted_index.educational | 15, 31, 110, 126 |
| abstract_inverted_index.objectivity | 27 |
| abstract_inverted_index.significant | 67 |
| abstract_inverted_index.traditional | 37 |
| abstract_inverted_index.consistency, | 72 |
| abstract_inverted_index.demonstrates | 54 |
| abstract_inverted_index.evaluations, | 32 |
| abstract_inverted_index.improvements | 68 |
| abstract_inverted_index.investigates | 19 |
| abstract_inverted_index.comprehensive | 42 |
| abstract_inverted_index.implications, | 91 |
| abstract_inverted_index.policymakers, | 118 |
| abstract_inverted_index.revolutionize | 61 |
| abstract_inverted_index.technologies, | 48 |
| abstract_inverted_index.considerations | 88 |
| abstract_inverted_index.learning-based | 79 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100441389 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |