Enhancing Image Retrieval Performance With Generative Models in Siamese Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jbhi.2025.3543907
Prostate cancer is a critical healthcare challenge globally and is one of the most prevalent types of cancer in men. Early and accurate diagnosis is essential for effective treatment and improved patient outcomes. In the existing literature, computer-aided diagnosis (CAD) solutions have been developed to assist pathologists in various tasks, including classification, diagnosis, and prostate cancer grading. Content-based image retrieval (CBIR) techniques provide valuable approaches to enhance these computer-aided solutions. This study evaluates how generative deep learning models can improve the quality of retrievals within a CBIR system. Specifically, we propose applying a Siamese Network approach, which enables us to learn how to encode image patches into latent representations for retrieval purposes. We used the ProGleason-GAN framework trained on the SiCAPv2 dataset to create similar pairs of input patches. Our observations indicate that introducing synthetic patches leads to notable improvements in the evaluated metrics, underscoring the utility of generative models within CBIR tasks. Furthermore, this work is the first in the literature where latent representations optimized for CBIR are used to train an attention mechanism for performing Gleason Scoring of a WSI.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jbhi.2025.3543907
- OA Status
- hybrid
- Cited By
- 1
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407782502
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407782502Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jbhi.2025.3543907Digital Object Identifier
- Title
-
Enhancing Image Retrieval Performance With Generative Models in Siamese NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-20Full publication date if available
- Authors
-
Alejandro Golfe, Adrián Colomer, José Padres, Valery NaranjoList of authors in order
- Landing page
-
https://doi.org/10.1109/jbhi.2025.3543907Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jbhi.2025.3543907Direct OA link when available
- Concepts
-
Computer science, Image retrieval, Artificial intelligence, Deep learning, Content-based image retrieval, Generative grammar, ENCODE, Machine learning, Pattern recognition (psychology), Information retrieval, Image (mathematics), Gene, Biochemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407782502 |
|---|---|
| doi | https://doi.org/10.1109/jbhi.2025.3543907 |
| ids.doi | https://doi.org/10.1109/jbhi.2025.3543907 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40036556 |
| ids.openalex | https://openalex.org/W4407782502 |
| fwci | 4.77340731 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000000981 |
| mesh[1].descriptor_ui | D011471 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnostic imaging |
| mesh[1].descriptor_name | Prostatic Neoplasms |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008297 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Male |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000077321 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Deep Learning |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D007090 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Image Interpretation, Computer-Assisted |
| mesh[5].qualifier_ui | Q000000981 |
| mesh[5].descriptor_ui | D011467 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | diagnostic imaging |
| mesh[5].descriptor_name | Prostate |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016208 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Databases, Factual |
| type | article |
| title | Enhancing Image Retrieval Performance With Generative Models in Siamese Networks |
| biblio.issue | 7 |
| biblio.volume | 29 |
| biblio.last_page | 4968 |
| biblio.first_page | 4956 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.838308572769165 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C1667742 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6521386504173279 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10927554 |
| concepts[1].display_name | Image retrieval |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6095037460327148 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4810467064380646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C2780052074 |
| concepts[4].level | 4 |
| concepts[4].score | 0.47328871488571167 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1128648 |
| concepts[4].display_name | Content-based image retrieval |
| concepts[5].id | https://openalex.org/C39890363 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4693725109100342 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[5].display_name | Generative grammar |
| concepts[6].id | https://openalex.org/C66746571 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45947590470314026 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[6].display_name | ENCODE |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44144585728645325 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4411182999610901 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C23123220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3518367409706116 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[9].display_name | Information retrieval |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.24019280076026917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.838308572769165 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/image-retrieval |
| keywords[1].score | 0.6521386504173279 |
| keywords[1].display_name | Image retrieval |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6095037460327148 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.4810467064380646 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/content-based-image-retrieval |
| keywords[4].score | 0.47328871488571167 |
| keywords[4].display_name | Content-based image retrieval |
| keywords[5].id | https://openalex.org/keywords/generative-grammar |
| keywords[5].score | 0.4693725109100342 |
| keywords[5].display_name | Generative grammar |
| keywords[6].id | https://openalex.org/keywords/encode |
| keywords[6].score | 0.45947590470314026 |
| keywords[6].display_name | ENCODE |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.44144585728645325 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4411182999610901 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/information-retrieval |
| keywords[9].score | 0.3518367409706116 |
| keywords[9].display_name | Information retrieval |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.24019280076026917 |
| keywords[10].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/jbhi.2025.3543907 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2495854775 |
| locations[0].source.issn | 2168-2194, 2168-2208 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2168-2194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Journal of Biomedical and Health Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| locations[0].landing_page_url | https://doi.org/10.1109/jbhi.2025.3543907 |
| locations[1].id | pmid:40036556 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE journal of biomedical and health informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40036556 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5092258132 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5095-9904 |
| authorships[0].author.display_name | Alejandro Golfe |
| authorships[0].affiliations[0].raw_affiliation_string | Valencian Graduate School and Research Network for Artificial Intelligence (valgrAI) and Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMANTech), Universitat Politécnica de Valéncia, Spain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alejandro Golfe |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Valencian Graduate School and Research Network for Artificial Intelligence (valgrAI) and Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMANTech), Universitat Politécnica de Valéncia, Spain |
| authorships[1].author.id | https://openalex.org/A5019517367 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7616-6029 |
| authorships[1].author.display_name | Adrián Colomer |
| authorships[1].affiliations[0].raw_affiliation_string | Valencian Graduate School and Research Network for Artificial Intelligence (valgrAI) and Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMANTech), Universitat Politécnica de Valéncia, Spain |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adrián Colomer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Valencian Graduate School and Research Network for Artificial Intelligence (valgrAI) and Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMANTech), Universitat Politécnica de Valéncia, Spain |
| authorships[2].author.id | https://openalex.org/A5116346113 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | José Padres |
| authorships[2].affiliations[0].raw_affiliation_string | Departamento de Comunicaciones (DCOM) in Escuela Técnica Superior de Ingeniería de Telecomunicación, Universitat Politécnica de Valéncia, Spain |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | José Padres |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Departamento de Comunicaciones (DCOM) in Escuela Técnica Superior de Ingeniería de Telecomunicación, Universitat Politécnica de Valéncia, Spain |
| authorships[3].author.id | https://openalex.org/A5043316752 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0181-3412 |
| authorships[3].author.display_name | Valery Naranjo |
| authorships[3].affiliations[0].raw_affiliation_string | Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politécnica de Valéncia, Spain |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Valery Naranjo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-Tech), Universitat Politécnica de Valéncia, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jbhi.2025.3543907 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Image Retrieval Performance With Generative Models in Siamese Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W2044706866, https://openalex.org/W2746816529, https://openalex.org/W2900811989, https://openalex.org/W2341223103, https://openalex.org/W2905186525, https://openalex.org/W4367727948, https://openalex.org/W3198880640, https://openalex.org/W2031096531, https://openalex.org/W2273467235, https://openalex.org/W2803523611 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jbhi.2025.3543907 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2495854775 |
| best_oa_location.source.issn | 2168-2194, 2168-2208 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2168-2194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Journal of Biomedical and Health Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jbhi.2025.3543907 |
| primary_location.id | doi:10.1109/jbhi.2025.3543907 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2495854775 |
| primary_location.source.issn | 2168-2194, 2168-2208 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2168-2194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Journal of Biomedical and Health Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| primary_location.landing_page_url | https://doi.org/10.1109/jbhi.2025.3543907 |
| publication_date | 2025-02-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3128646645, https://openalex.org/W4315645819, https://openalex.org/W2284082554, https://openalex.org/W221956105, https://openalex.org/W1998118468, https://openalex.org/W2470965540, https://openalex.org/W3038704997, https://openalex.org/W2792527495, https://openalex.org/W4285024288, https://openalex.org/W3004868960, https://openalex.org/W2890139949, https://openalex.org/W4381951150, https://openalex.org/W4394597784, https://openalex.org/W3090043060, https://openalex.org/W4281562763, https://openalex.org/W3109497814, https://openalex.org/W2898020899, https://openalex.org/W2592936145, https://openalex.org/W4246193833, https://openalex.org/W6684191040, https://openalex.org/W2141504882, https://openalex.org/W2949226441, https://openalex.org/W6737664043, https://openalex.org/W3130775838, https://openalex.org/W2901612843, https://openalex.org/W2151103935, https://openalex.org/W2109506130, https://openalex.org/W2094794667, https://openalex.org/W3171768271, https://openalex.org/W2808879369, https://openalex.org/W2807719128, https://openalex.org/W2791771578, https://openalex.org/W2802644309, https://openalex.org/W2809504593, https://openalex.org/W2784128585, https://openalex.org/W6712185225, https://openalex.org/W2204975001, https://openalex.org/W2963713828, https://openalex.org/W2171590421, https://openalex.org/W1975517671, https://openalex.org/W2790797863, https://openalex.org/W3025454509, https://openalex.org/W3025895701, https://openalex.org/W2566832195, https://openalex.org/W2001950238, https://openalex.org/W2793475809, https://openalex.org/W2521176774, https://openalex.org/W4387870087, https://openalex.org/W2740426294, https://openalex.org/W3037731665, https://openalex.org/W2963446712, https://openalex.org/W2108598243, https://openalex.org/W4298395281, https://openalex.org/W2194775991, https://openalex.org/W6799475367, https://openalex.org/W3158436079, https://openalex.org/W3217658289, https://openalex.org/W4389891277, https://openalex.org/W2912854782, https://openalex.org/W3192992402, https://openalex.org/W4401198708, https://openalex.org/W4392947532, https://openalex.org/W2640408555, https://openalex.org/W6745560452, https://openalex.org/W6640036494, https://openalex.org/W6735913928, https://openalex.org/W6682780409, https://openalex.org/W2051224630, https://openalex.org/W2085487226 |
| referenced_works_count | 69 |
| abstract_inverted_index.a | 3, 85, 92, 180 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.We | 112 |
| abstract_inverted_index.an | 172 |
| abstract_inverted_index.in | 18, 47, 140, 159 |
| abstract_inverted_index.is | 2, 9, 24, 156 |
| abstract_inverted_index.of | 11, 16, 82, 126, 147, 179 |
| abstract_inverted_index.on | 118 |
| abstract_inverted_index.to | 44, 65, 99, 102, 122, 137, 170 |
| abstract_inverted_index.us | 98 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.Our | 129 |
| abstract_inverted_index.and | 8, 21, 29, 53 |
| abstract_inverted_index.are | 168 |
| abstract_inverted_index.can | 78 |
| abstract_inverted_index.for | 26, 109, 166, 175 |
| abstract_inverted_index.how | 73, 101 |
| abstract_inverted_index.one | 10 |
| abstract_inverted_index.the | 12, 34, 80, 114, 119, 141, 145, 157, 160 |
| abstract_inverted_index.CBIR | 86, 151, 167 |
| abstract_inverted_index.This | 70 |
| abstract_inverted_index.WSI. | 181 |
| abstract_inverted_index.been | 42 |
| abstract_inverted_index.deep | 75 |
| abstract_inverted_index.have | 41 |
| abstract_inverted_index.into | 106 |
| abstract_inverted_index.men. | 19 |
| abstract_inverted_index.most | 13 |
| abstract_inverted_index.that | 132 |
| abstract_inverted_index.this | 154 |
| abstract_inverted_index.used | 113, 169 |
| abstract_inverted_index.work | 155 |
| abstract_inverted_index.(CAD) | 39 |
| abstract_inverted_index.Early | 20 |
| abstract_inverted_index.first | 158 |
| abstract_inverted_index.image | 58, 104 |
| abstract_inverted_index.input | 127 |
| abstract_inverted_index.leads | 136 |
| abstract_inverted_index.learn | 100 |
| abstract_inverted_index.pairs | 125 |
| abstract_inverted_index.study | 71 |
| abstract_inverted_index.these | 67 |
| abstract_inverted_index.train | 171 |
| abstract_inverted_index.types | 15 |
| abstract_inverted_index.where | 162 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.(CBIR) | 60 |
| abstract_inverted_index.assist | 45 |
| abstract_inverted_index.cancer | 1, 17, 55 |
| abstract_inverted_index.create | 123 |
| abstract_inverted_index.encode | 103 |
| abstract_inverted_index.latent | 107, 163 |
| abstract_inverted_index.models | 77, 149 |
| abstract_inverted_index.tasks, | 49 |
| abstract_inverted_index.tasks. | 152 |
| abstract_inverted_index.within | 84, 150 |
| abstract_inverted_index.Gleason | 177 |
| abstract_inverted_index.Network | 94 |
| abstract_inverted_index.Scoring | 178 |
| abstract_inverted_index.SiCAPv2 | 120 |
| abstract_inverted_index.Siamese | 93 |
| abstract_inverted_index.dataset | 121 |
| abstract_inverted_index.enables | 97 |
| abstract_inverted_index.enhance | 66 |
| abstract_inverted_index.improve | 79 |
| abstract_inverted_index.notable | 138 |
| abstract_inverted_index.patches | 105, 135 |
| abstract_inverted_index.patient | 31 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.provide | 62 |
| abstract_inverted_index.quality | 81 |
| abstract_inverted_index.similar | 124 |
| abstract_inverted_index.system. | 87 |
| abstract_inverted_index.trained | 117 |
| abstract_inverted_index.utility | 146 |
| abstract_inverted_index.various | 48 |
| abstract_inverted_index.Prostate | 0 |
| abstract_inverted_index.accurate | 22 |
| abstract_inverted_index.applying | 91 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.globally | 7 |
| abstract_inverted_index.grading. | 56 |
| abstract_inverted_index.improved | 30 |
| abstract_inverted_index.indicate | 131 |
| abstract_inverted_index.learning | 76 |
| abstract_inverted_index.metrics, | 143 |
| abstract_inverted_index.patches. | 128 |
| abstract_inverted_index.prostate | 54 |
| abstract_inverted_index.valuable | 63 |
| abstract_inverted_index.approach, | 95 |
| abstract_inverted_index.attention | 173 |
| abstract_inverted_index.challenge | 6 |
| abstract_inverted_index.developed | 43 |
| abstract_inverted_index.diagnosis | 23, 38 |
| abstract_inverted_index.effective | 27 |
| abstract_inverted_index.essential | 25 |
| abstract_inverted_index.evaluated | 142 |
| abstract_inverted_index.evaluates | 72 |
| abstract_inverted_index.framework | 116 |
| abstract_inverted_index.including | 50 |
| abstract_inverted_index.mechanism | 174 |
| abstract_inverted_index.optimized | 165 |
| abstract_inverted_index.outcomes. | 32 |
| abstract_inverted_index.prevalent | 14 |
| abstract_inverted_index.purposes. | 111 |
| abstract_inverted_index.retrieval | 59, 110 |
| abstract_inverted_index.solutions | 40 |
| abstract_inverted_index.synthetic | 134 |
| abstract_inverted_index.treatment | 28 |
| abstract_inverted_index.approaches | 64 |
| abstract_inverted_index.diagnosis, | 52 |
| abstract_inverted_index.generative | 74, 148 |
| abstract_inverted_index.healthcare | 5 |
| abstract_inverted_index.literature | 161 |
| abstract_inverted_index.performing | 176 |
| abstract_inverted_index.retrievals | 83 |
| abstract_inverted_index.solutions. | 69 |
| abstract_inverted_index.techniques | 61 |
| abstract_inverted_index.introducing | 133 |
| abstract_inverted_index.literature, | 36 |
| abstract_inverted_index.Furthermore, | 153 |
| abstract_inverted_index.improvements | 139 |
| abstract_inverted_index.observations | 130 |
| abstract_inverted_index.pathologists | 46 |
| abstract_inverted_index.underscoring | 144 |
| abstract_inverted_index.Content-based | 57 |
| abstract_inverted_index.Specifically, | 88 |
| abstract_inverted_index.ProGleason-GAN | 115 |
| abstract_inverted_index.computer-aided | 37, 68 |
| abstract_inverted_index.classification, | 51 |
| abstract_inverted_index.representations | 108, 164 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.83688637 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |