Enhancing Intrusion Detection Using Deep Neural Networks in Cloud Environments Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.36948/ijfmr.2025.v07i05.55919
Intrusion Detection Systems (IDS) are vital for securing cloud environments, where dynamic scalability and distributed architecture present significant security challenges. Accurate, real-time threat detection with minimal false positives is essential for effective cloud protection. Traditional machine learning models such as Support Vector Machines (SVM) and Random Forests have been applied in IDS but often struggle with high false positive rates and limited effectiveness against novel or zero-day attacks. A deep neural network (DNN) architecture is designed, incorporating multiple ReLU-activated hidden layers and dropout layers to prevent overfitting. The model is trained using the Adam optimizer and categorical cross-entropy loss to ensure efficient learning and responsiveness. Evaluation on NSL-KDD and CICIDS2017 datasets demonstrates high detection accuracy—98.7% and 97.4% respectively—along with reduced false positive rates and promising results in identifying zero-day attacks during simulation. Future work includes integrating federated learning to support distributed deployment and enhance privacy preservation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36948/ijfmr.2025.v07i05.55919
- https://www.ijfmr.com/papers/2025/5/55919.pdf
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4414292414
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414292414Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36948/ijfmr.2025.v07i05.55919Digital Object Identifier
- Title
-
Enhancing Intrusion Detection Using Deep Neural Networks in Cloud EnvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-16Full publication date if available
- Authors
-
B Swathi, Allam Balaram, Ajmeera Kiran, V. ThrimurthuluList of authors in order
- Landing page
-
https://doi.org/10.36948/ijfmr.2025.v07i05.55919Publisher landing page
- PDF URL
-
https://www.ijfmr.com/papers/2025/5/55919.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ijfmr.com/papers/2025/5/55919.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414292414 |
|---|---|
| doi | https://doi.org/10.36948/ijfmr.2025.v07i05.55919 |
| ids.doi | https://doi.org/10.36948/ijfmr.2025.v07i05.55919 |
| ids.openalex | https://openalex.org/W4414292414 |
| fwci | 0.0 |
| type | article |
| title | Enhancing Intrusion Detection Using Deep Neural Networks in Cloud Environments |
| biblio.issue | 5 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9524000287055969 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9189000129699707 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.36948/ijfmr.2025.v07i05.55919 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210207214 |
| locations[0].source.issn | 2582-2160 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-2160 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal For Multidisciplinary Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://www.ijfmr.com/papers/2025/5/55919.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal For Multidisciplinary Research |
| locations[0].landing_page_url | https://doi.org/10.36948/ijfmr.2025.v07i05.55919 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028999285 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | B Swathi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biyyala Swathi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077530913 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2312-2700 |
| authorships[1].author.display_name | Allam Balaram |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Allam Balaram |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087336365 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3826-4346 |
| authorships[2].author.display_name | Ajmeera Kiran |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ajmeera Kiran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114512349 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | V. Thrimurthulu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | V Thrimurthulu |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijfmr.com/papers/2025/5/55919.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Intrusion Detection Using Deep Neural Networks in Cloud Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36948/ijfmr.2025.v07i05.55919 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210207214 |
| best_oa_location.source.issn | 2582-2160 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-2160 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal For Multidisciplinary Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://www.ijfmr.com/papers/2025/5/55919.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal For Multidisciplinary Research |
| best_oa_location.landing_page_url | https://doi.org/10.36948/ijfmr.2025.v07i05.55919 |
| primary_location.id | doi:10.36948/ijfmr.2025.v07i05.55919 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210207214 |
| primary_location.source.issn | 2582-2160 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-2160 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal For Multidisciplinary Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://www.ijfmr.com/papers/2025/5/55919.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal For Multidisciplinary Research |
| primary_location.landing_page_url | https://doi.org/10.36948/ijfmr.2025.v07i05.55919 |
| publication_date | 2025-09-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 68 |
| abstract_inverted_index.as | 39 |
| abstract_inverted_index.in | 50, 126 |
| abstract_inverted_index.is | 28, 74, 89 |
| abstract_inverted_index.on | 106 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 84, 99, 138 |
| abstract_inverted_index.IDS | 51 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 13, 44, 60, 81, 95, 103, 108, 115, 123, 142 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.but | 52 |
| abstract_inverted_index.for | 6, 30 |
| abstract_inverted_index.the | 92 |
| abstract_inverted_index.Adam | 93 |
| abstract_inverted_index.been | 48 |
| abstract_inverted_index.deep | 69 |
| abstract_inverted_index.have | 47 |
| abstract_inverted_index.high | 56, 112 |
| abstract_inverted_index.loss | 98 |
| abstract_inverted_index.such | 38 |
| abstract_inverted_index.with | 24, 55, 118 |
| abstract_inverted_index.work | 133 |
| abstract_inverted_index.(DNN) | 72 |
| abstract_inverted_index.(IDS) | 3 |
| abstract_inverted_index.(SVM) | 43 |
| abstract_inverted_index.97.4% | 116 |
| abstract_inverted_index.cloud | 8, 32 |
| abstract_inverted_index.false | 26, 57, 120 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.novel | 64 |
| abstract_inverted_index.often | 53 |
| abstract_inverted_index.rates | 59, 122 |
| abstract_inverted_index.using | 91 |
| abstract_inverted_index.vital | 5 |
| abstract_inverted_index.where | 10 |
| abstract_inverted_index.Future | 132 |
| abstract_inverted_index.Random | 45 |
| abstract_inverted_index.Vector | 41 |
| abstract_inverted_index.during | 130 |
| abstract_inverted_index.ensure | 100 |
| abstract_inverted_index.hidden | 79 |
| abstract_inverted_index.layers | 80, 83 |
| abstract_inverted_index.models | 37 |
| abstract_inverted_index.neural | 70 |
| abstract_inverted_index.threat | 22 |
| abstract_inverted_index.Forests | 46 |
| abstract_inverted_index.NSL-KDD | 107 |
| abstract_inverted_index.Support | 40 |
| abstract_inverted_index.Systems | 2 |
| abstract_inverted_index.against | 63 |
| abstract_inverted_index.applied | 49 |
| abstract_inverted_index.attacks | 129 |
| abstract_inverted_index.dropout | 82 |
| abstract_inverted_index.dynamic | 11 |
| abstract_inverted_index.enhance | 143 |
| abstract_inverted_index.limited | 61 |
| abstract_inverted_index.machine | 35 |
| abstract_inverted_index.minimal | 25 |
| abstract_inverted_index.network | 71 |
| abstract_inverted_index.present | 16 |
| abstract_inverted_index.prevent | 85 |
| abstract_inverted_index.privacy | 144 |
| abstract_inverted_index.reduced | 119 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.support | 139 |
| abstract_inverted_index.trained | 90 |
| abstract_inverted_index.Machines | 42 |
| abstract_inverted_index.attacks. | 67 |
| abstract_inverted_index.datasets | 110 |
| abstract_inverted_index.includes | 134 |
| abstract_inverted_index.learning | 36, 102, 137 |
| abstract_inverted_index.multiple | 77 |
| abstract_inverted_index.positive | 58, 121 |
| abstract_inverted_index.securing | 7 |
| abstract_inverted_index.security | 18 |
| abstract_inverted_index.struggle | 54 |
| abstract_inverted_index.zero-day | 66, 128 |
| abstract_inverted_index.Accurate, | 20 |
| abstract_inverted_index.Detection | 1 |
| abstract_inverted_index.Intrusion | 0 |
| abstract_inverted_index.designed, | 75 |
| abstract_inverted_index.detection | 23, 113 |
| abstract_inverted_index.effective | 31 |
| abstract_inverted_index.efficient | 101 |
| abstract_inverted_index.essential | 29 |
| abstract_inverted_index.federated | 136 |
| abstract_inverted_index.optimizer | 94 |
| abstract_inverted_index.positives | 27 |
| abstract_inverted_index.promising | 124 |
| abstract_inverted_index.real-time | 21 |
| abstract_inverted_index.CICIDS2017 | 109 |
| abstract_inverted_index.Evaluation | 105 |
| abstract_inverted_index.deployment | 141 |
| abstract_inverted_index.Traditional | 34 |
| abstract_inverted_index.categorical | 96 |
| abstract_inverted_index.challenges. | 19 |
| abstract_inverted_index.distributed | 14, 140 |
| abstract_inverted_index.identifying | 127 |
| abstract_inverted_index.integrating | 135 |
| abstract_inverted_index.protection. | 33 |
| abstract_inverted_index.scalability | 12 |
| abstract_inverted_index.significant | 17 |
| abstract_inverted_index.simulation. | 131 |
| abstract_inverted_index.architecture | 15, 73 |
| abstract_inverted_index.demonstrates | 111 |
| abstract_inverted_index.overfitting. | 86 |
| abstract_inverted_index.cross-entropy | 97 |
| abstract_inverted_index.effectiveness | 62 |
| abstract_inverted_index.environments, | 9 |
| abstract_inverted_index.incorporating | 76 |
| abstract_inverted_index.preservation. | 145 |
| abstract_inverted_index.ReLU-activated | 78 |
| abstract_inverted_index.responsiveness. | 104 |
| abstract_inverted_index.accuracy—98.7% | 114 |
| abstract_inverted_index.respectively—along | 117 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.50424626 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |