Enhancing Large-Scale AI Training Efficiency: The C4 Solution for Real-Time Anomaly Detection and Communication Optimization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.04594
The emergence of Large Language Models (LLMs) has necessitated the adoption of distributed training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, the efficiency of large-scale distributed training systems is often suboptimal due to the increased likelihood of hardware errors in high-end GPU products and the heightened risk of network traffic collisions. Moreover, any local hardware failure can disrupt training tasks, and the inability to swiftly identify faulty components leads to a significant waste of GPU resources. And, prolonged communication due to traffic collisions can substantially increase GPU waiting times. To address these challenges, we propose a communication-driven solution, namely the C4. The key insights of C4 are twofold. First, the load in distributed training exhibits homogeneous characteristics and is divided into iterations through periodic synchronization, therefore hardware anomalies would incur certain syndrome in collective communication. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving a limited number of long-lived flows, allows C4 to efficiently execute traffic planning, substantially reducing bandwidth competition among these flows. The C4 has been extensively deployed across real-world production systems in a hyperscale cloud provider, yielding a significant improvement in system efficiency, from 30% to 45%. This enhancement is attributed to a 30% reduction in error-induced overhead and a 15% reduction in communication costs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.04594
- https://arxiv.org/pdf/2406.04594
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399511799
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399511799Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.04594Digital Object Identifier
- Title
-
Enhancing Large-Scale AI Training Efficiency: The C4 Solution for Real-Time Anomaly Detection and Communication OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-07Full publication date if available
- Authors
-
Jianbo Dong, Bin Luo, Jun Zhang, Pengcheng Zhang, Fei Feng, Yikai Zhu, Ang Liu, Zian Chen, Yi Shi, Hairong Jiao, Gang Lü, Yu Guan, Ennan Zhai, Wencong Xiao, Hanyu Zhao, Man Yuan, Siran Yang, Xiang Li, Jiamang Wang, Rui Men, Jianwei Zhang, Zhong Huang, Dennis Cai, Yuan Xie, Binzhang FuList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.04594Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.04594Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.04594Direct OA link when available
- Concepts
-
Boosting (machine learning), Training (meteorology), Computer science, Scale (ratio), Artificial intelligence, Geography, Cartography, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399511799 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.04594 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.04594 |
| ids.openalex | https://openalex.org/W4399511799 |
| fwci | |
| type | preprint |
| title | Enhancing Large-Scale AI Training Efficiency: The C4 Solution for Real-Time Anomaly Detection and Communication Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10715 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8518000245094299 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Distributed and Parallel Computing Systems |
| topics[1].id | https://openalex.org/T10904 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8309000134468079 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1708 |
| topics[1].subfield.display_name | Hardware and Architecture |
| topics[1].display_name | Embedded Systems Design Techniques |
| topics[2].id | https://openalex.org/T10829 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8086000084877014 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Interconnection Networks and Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8720502853393555 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C2777211547 |
| concepts[1].level | 2 |
| concepts[1].score | 0.596358060836792 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[1].display_name | Training (meteorology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5302947163581848 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5018835067749023 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35420072078704834 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.095765620470047 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C58640448 |
| concepts[6].level | 1 |
| concepts[6].score | 0.068084716796875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[6].display_name | Cartography |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.8720502853393555 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/training |
| keywords[1].score | 0.596358060836792 |
| keywords[1].display_name | Training (meteorology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5302947163581848 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5018835067749023 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.35420072078704834 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.095765620470047 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/cartography |
| keywords[6].score | 0.068084716796875 |
| keywords[6].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.04594 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.04594 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.04594 |
| locations[1].id | doi:10.48550/arxiv.2406.04594 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.04594 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100743206 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0939-8943 |
| authorships[0].author.display_name | Jianbo Dong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dong, Jianbo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101650262 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3040-3500 |
| authorships[1].author.display_name | Bin Luo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luo, Bin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100400217 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7835-9871 |
| authorships[2].author.display_name | Jun Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Jun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101639651 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4296-9648 |
| authorships[3].author.display_name | Pengcheng Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Pengcheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100309084 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Fei Feng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feng, Fei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5011927243 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6613-0188 |
| authorships[5].author.display_name | Yikai Zhu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhu, Yikai |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100690922 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9353-0948 |
| authorships[6].author.display_name | Ang Liu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Liu, Ang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5102584899 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Zian Chen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chen, Zian |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5012604520 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3575-4948 |
| authorships[8].author.display_name | Yi Shi |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shi, Yi |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5113246514 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Hairong Jiao |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Jiao, Hairong |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5057444662 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-5921-1839 |
| authorships[10].author.display_name | Gang Lü |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Lu, Gang |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5113236279 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Yu Guan |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Guan, Yu |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5103040133 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-4352-7497 |
| authorships[12].author.display_name | Ennan Zhai |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Zhai, Ennan |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5086945155 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-3043-522X |
| authorships[13].author.display_name | Wencong Xiao |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Xiao, Wencong |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5108213437 |
| authorships[14].author.orcid | |
| authorships[14].author.display_name | Hanyu Zhao |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Zhao, Hanyu |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5112977411 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Man Yuan |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Yuan, Man |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5101467610 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-0484-7079 |
| authorships[16].author.display_name | Siran Yang |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Yang, Siran |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5100306915 |
| authorships[17].author.orcid | https://orcid.org/0009-0007-8870-852X |
| authorships[17].author.display_name | Xiang Li |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Li, Xiang |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5033253015 |
| authorships[18].author.orcid | |
| authorships[18].author.display_name | Jiamang Wang |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Wang, Jiamang |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5004626105 |
| authorships[19].author.orcid | https://orcid.org/0000-0002-4429-3461 |
| authorships[19].author.display_name | Rui Men |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Men, Rui |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5100326965 |
| authorships[20].author.orcid | https://orcid.org/0000-0002-3219-0801 |
| authorships[20].author.display_name | Jianwei Zhang |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Zhang, Jianwei |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5101951121 |
| authorships[21].author.orcid | https://orcid.org/0000-0002-8282-223X |
| authorships[21].author.display_name | Zhong Huang |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Zhong, Huang |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5102810097 |
| authorships[22].author.orcid | https://orcid.org/0009-0004-5824-8911 |
| authorships[22].author.display_name | Dennis Cai |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Cai, Dennis |
| authorships[22].is_corresponding | False |
| authorships[23].author.id | https://openalex.org/A5100602731 |
| authorships[23].author.orcid | https://orcid.org/0009-0003-6846-9956 |
| authorships[23].author.display_name | Yuan Xie |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Xie, Yuan |
| authorships[23].is_corresponding | False |
| authorships[24].author.id | https://openalex.org/A5006224078 |
| authorships[24].author.orcid | https://orcid.org/0009-0008-1213-0554 |
| authorships[24].author.display_name | Binzhang Fu |
| authorships[24].author_position | last |
| authorships[24].raw_author_name | Fu, Binzhang |
| authorships[24].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.04594 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-11T00:00:00 |
| display_name | Enhancing Large-Scale AI Training Efficiency: The C4 Solution for Real-Time Anomaly Detection and Communication Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10715 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8518000245094299 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Distributed and Parallel Computing Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W4231274751, https://openalex.org/W1549363203, https://openalex.org/W2154063878, https://openalex.org/W2556012038, https://openalex.org/W1489772951, https://openalex.org/W1538046993 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.04594 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.04594 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.04594 |
| primary_location.id | pmh:oai:arXiv.org:2406.04594 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.04594 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.04594 |
| publication_date | 2024-06-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 77, 102, 180, 211, 216, 231, 238 |
| abstract_inverted_index.By | 142 |
| abstract_inverted_index.C4 | 112, 146, 187, 201 |
| abstract_inverted_index.To | 96 |
| abstract_inverted_index.by | 166 |
| abstract_inverted_index.in | 46, 118, 139, 168, 210, 219, 234, 241 |
| abstract_inverted_index.is | 35, 125, 228 |
| abstract_inverted_index.of | 2, 11, 18, 20, 30, 43, 54, 80, 111, 176, 183 |
| abstract_inverted_index.to | 22, 39, 70, 76, 87, 188, 224, 230 |
| abstract_inverted_index.we | 100 |
| abstract_inverted_index.15% | 239 |
| abstract_inverted_index.30% | 223, 232 |
| abstract_inverted_index.C4. | 107 |
| abstract_inverted_index.GPU | 48, 81, 93 |
| abstract_inverted_index.The | 0, 108, 200 |
| abstract_inverted_index.and | 50, 67, 124, 157, 237 |
| abstract_inverted_index.any | 59 |
| abstract_inverted_index.are | 113 |
| abstract_inverted_index.can | 63, 90, 147 |
| abstract_inverted_index.due | 38, 86 |
| abstract_inverted_index.has | 7, 202 |
| abstract_inverted_index.key | 109 |
| abstract_inverted_index.the | 9, 16, 28, 40, 51, 68, 106, 116, 150, 155, 159, 172 |
| abstract_inverted_index.45%. | 225 |
| abstract_inverted_index.And, | 83 |
| abstract_inverted_index.GPUs | 21 |
| abstract_inverted_index.This | 226 |
| abstract_inverted_index.been | 203 |
| abstract_inverted_index.from | 222 |
| abstract_inverted_index.into | 127 |
| abstract_inverted_index.load | 117 |
| abstract_inverted_index.risk | 53 |
| abstract_inverted_index.this | 144 |
| abstract_inverted_index.Large | 3 |
| abstract_inverted_index.among | 197 |
| abstract_inverted_index.cloud | 213 |
| abstract_inverted_index.incur | 136 |
| abstract_inverted_index.leads | 75 |
| abstract_inverted_index.local | 60 |
| abstract_inverted_index.model | 175 |
| abstract_inverted_index.often | 36 |
| abstract_inverted_index.task, | 160 |
| abstract_inverted_index.these | 98, 198 |
| abstract_inverted_index.train | 23 |
| abstract_inverted_index.waste | 79 |
| abstract_inverted_index.would | 135 |
| abstract_inverted_index.(LLMs) | 6 |
| abstract_inverted_index.First, | 115 |
| abstract_inverted_index.Models | 5 |
| abstract_inverted_index.across | 206 |
| abstract_inverted_index.allows | 186 |
| abstract_inverted_index.caused | 165 |
| abstract_inverted_index.costs. | 243 |
| abstract_inverted_index.delays | 167 |
| abstract_inverted_index.errors | 45 |
| abstract_inverted_index.faulty | 73, 151 |
| abstract_inverted_index.flows, | 185 |
| abstract_inverted_index.flows. | 199 |
| abstract_inverted_index.model. | 26 |
| abstract_inverted_index.namely | 105 |
| abstract_inverted_index.number | 182 |
| abstract_inverted_index.single | 25 |
| abstract_inverted_index.system | 220 |
| abstract_inverted_index.tasks, | 66 |
| abstract_inverted_index.times. | 95 |
| abstract_inverted_index.Second, | 171 |
| abstract_inverted_index.address | 97 |
| abstract_inverted_index.anomaly | 169 |
| abstract_inverted_index.certain | 137 |
| abstract_inverted_index.disrupt | 64 |
| abstract_inverted_index.divided | 126 |
| abstract_inverted_index.execute | 190 |
| abstract_inverted_index.failure | 62 |
| abstract_inverted_index.isolate | 154 |
| abstract_inverted_index.limited | 181 |
| abstract_inverted_index.network | 55 |
| abstract_inverted_index.propose | 101 |
| abstract_inverted_index.rapidly | 148 |
| abstract_inverted_index.restart | 158 |
| abstract_inverted_index.swiftly | 71, 153 |
| abstract_inverted_index.systems | 34, 209 |
| abstract_inverted_index.thereby | 161 |
| abstract_inverted_index.through | 129 |
| abstract_inverted_index.traffic | 56, 88, 191 |
| abstract_inverted_index.waiting | 94 |
| abstract_inverted_index.wastage | 164 |
| abstract_inverted_index.Language | 4 |
| abstract_inverted_index.adoption | 10 |
| abstract_inverted_index.anomaly, | 156 |
| abstract_inverted_index.avoiding | 162 |
| abstract_inverted_index.deployed | 205 |
| abstract_inverted_index.exhibits | 121 |
| abstract_inverted_index.feature, | 145 |
| abstract_inverted_index.hardware | 44, 61, 133 |
| abstract_inverted_index.high-end | 47 |
| abstract_inverted_index.identify | 72, 149 |
| abstract_inverted_index.increase | 92 |
| abstract_inverted_index.insights | 110 |
| abstract_inverted_index.overhead | 236 |
| abstract_inverted_index.periodic | 130 |
| abstract_inverted_index.products | 49 |
| abstract_inverted_index.reducing | 194 |
| abstract_inverted_index.resource | 163 |
| abstract_inverted_index.syndrome | 138 |
| abstract_inverted_index.training | 13, 33, 65, 120 |
| abstract_inverted_index.twofold. | 114 |
| abstract_inverted_index.yielding | 215 |
| abstract_inverted_index.Moreover, | 58 |
| abstract_inverted_index.anomalies | 134 |
| abstract_inverted_index.bandwidth | 195 |
| abstract_inverted_index.emergence | 1 |
| abstract_inverted_index.inability | 69 |
| abstract_inverted_index.increased | 41 |
| abstract_inverted_index.involving | 15, 179 |
| abstract_inverted_index.planning, | 192 |
| abstract_inverted_index.prolonged | 84 |
| abstract_inverted_index.provider, | 214 |
| abstract_inverted_index.reduction | 233, 240 |
| abstract_inverted_index.solution, | 104 |
| abstract_inverted_index.therefore | 132 |
| abstract_inverted_index.thousands | 19 |
| abstract_inverted_index.attributed | 229 |
| abstract_inverted_index.collective | 140, 177 |
| abstract_inverted_index.collisions | 89 |
| abstract_inverted_index.components | 74 |
| abstract_inverted_index.deployment | 17 |
| abstract_inverted_index.detection. | 170 |
| abstract_inverted_index.efficiency | 29 |
| abstract_inverted_index.heightened | 52 |
| abstract_inverted_index.hyperscale | 212 |
| abstract_inverted_index.iterations | 128 |
| abstract_inverted_index.leveraging | 143 |
| abstract_inverted_index.likelihood | 42 |
| abstract_inverted_index.long-lived | 184 |
| abstract_inverted_index.production | 208 |
| abstract_inverted_index.real-world | 207 |
| abstract_inverted_index.resources. | 82 |
| abstract_inverted_index.suboptimal | 37 |
| abstract_inverted_index.challenges, | 99 |
| abstract_inverted_index.collisions. | 57 |
| abstract_inverted_index.competition | 196 |
| abstract_inverted_index.components, | 152 |
| abstract_inverted_index.distributed | 12, 32, 119 |
| abstract_inverted_index.efficiency, | 221 |
| abstract_inverted_index.efficiently | 189 |
| abstract_inverted_index.enhancement | 227 |
| abstract_inverted_index.extensively | 204 |
| abstract_inverted_index.homogeneous | 122 |
| abstract_inverted_index.improvement | 218 |
| abstract_inverted_index.large-scale | 31 |
| abstract_inverted_index.predictable | 173 |
| abstract_inverted_index.significant | 78, 217 |
| abstract_inverted_index.techniques, | 14 |
| abstract_inverted_index.necessitated | 8 |
| abstract_inverted_index.communication | 85, 174, 242 |
| abstract_inverted_index.error-induced | 235 |
| abstract_inverted_index.substantially | 91, 193 |
| abstract_inverted_index.Unfortunately, | 27 |
| abstract_inverted_index.communication, | 178 |
| abstract_inverted_index.communication. | 141 |
| abstract_inverted_index.characteristics | 123 |
| abstract_inverted_index.synchronization, | 131 |
| abstract_inverted_index.communication-driven | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 25 |
| citation_normalized_percentile |