Enhancing Robustness of LLM-Driven Multi-Agent Systems through Randomized Smoothing Article Swipe
This paper presents a defense framework for enhancing the safety of large language model (LLM) empowered multi-agent systems (MAS) in safety-critical domains such as aerospace. We apply randomized smoothing, a statistical robustness certification technique, to the MAS consensus context, enabling probabilistic guarantees on agent decisions under adversarial influence. Unlike traditional verification methods, our approach operates in black-box settings and employs a two-stage adaptive sampling mechanism to balance robustness and computational efficiency. Simulation results demonstrate that our method effectively prevents the propagation of adversarial behaviors and hallucinations while maintaining consensus performance. This work provides a practical and scalable path toward safe deployment of LLM-based MAS in real-world, high-stakes environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.04105
- https://arxiv.org/pdf/2507.04105
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415345678
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415345678Canonical identifier for this work in OpenAlex
- Title
-
Enhancing Robustness of LLM-Driven Multi-Agent Systems through Randomized SmoothingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-05Full publication date if available
- Authors
-
Jinwei Hu, Yi Dong, Zhengtao Ding, Xiaowei HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.04105Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.04105Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.04105Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415345678 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4415345678 |
| fwci | 0.0 |
| type | article |
| title | Enhancing Robustness of LLM-Driven Multi-Agent Systems through Randomized Smoothing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9419000148773193 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9071000218391418 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.04105 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.04105 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.04105 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5101242822 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jinwei Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu, Jinwei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100650289 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3047-7777 |
| authorships[1].author.display_name | Yi Dong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dong, Yi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086465750 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0690-7853 |
| authorships[2].author.display_name | Zhengtao Ding |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ding, Zhengtao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5083538605 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiaowei Huang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Huang, Xiaowei |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.04105 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-20T00:00:00 |
| display_name | Enhancing Robustness of LLM-Driven Multi-Agent Systems through Randomized Smoothing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9419000148773193 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.04105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.04105 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.04105 |
| primary_location.id | pmh:oai:arXiv.org:2507.04105 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.04105 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.04105 |
| publication_date | 2025-07-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 29, 60, 93 |
| abstract_inverted_index.We | 25 |
| abstract_inverted_index.as | 23 |
| abstract_inverted_index.in | 19, 55, 104 |
| abstract_inverted_index.of | 10, 81, 101 |
| abstract_inverted_index.on | 42 |
| abstract_inverted_index.to | 34, 65 |
| abstract_inverted_index.MAS | 36, 103 |
| abstract_inverted_index.and | 58, 68, 84, 95 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.our | 52, 75 |
| abstract_inverted_index.the | 8, 35, 79 |
| abstract_inverted_index.This | 0, 90 |
| abstract_inverted_index.path | 97 |
| abstract_inverted_index.safe | 99 |
| abstract_inverted_index.such | 22 |
| abstract_inverted_index.that | 74 |
| abstract_inverted_index.work | 91 |
| abstract_inverted_index.(LLM) | 14 |
| abstract_inverted_index.(MAS) | 18 |
| abstract_inverted_index.agent | 43 |
| abstract_inverted_index.apply | 26 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.model | 13 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.under | 45 |
| abstract_inverted_index.while | 86 |
| abstract_inverted_index.Unlike | 48 |
| abstract_inverted_index.method | 76 |
| abstract_inverted_index.safety | 9 |
| abstract_inverted_index.toward | 98 |
| abstract_inverted_index.balance | 66 |
| abstract_inverted_index.defense | 4 |
| abstract_inverted_index.domains | 21 |
| abstract_inverted_index.employs | 59 |
| abstract_inverted_index.results | 72 |
| abstract_inverted_index.systems | 17 |
| abstract_inverted_index.adaptive | 62 |
| abstract_inverted_index.approach | 53 |
| abstract_inverted_index.context, | 38 |
| abstract_inverted_index.enabling | 39 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.methods, | 51 |
| abstract_inverted_index.operates | 54 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.prevents | 78 |
| abstract_inverted_index.provides | 92 |
| abstract_inverted_index.sampling | 63 |
| abstract_inverted_index.scalable | 96 |
| abstract_inverted_index.settings | 57 |
| abstract_inverted_index.LLM-based | 102 |
| abstract_inverted_index.behaviors | 83 |
| abstract_inverted_index.black-box | 56 |
| abstract_inverted_index.consensus | 37, 88 |
| abstract_inverted_index.decisions | 44 |
| abstract_inverted_index.empowered | 15 |
| abstract_inverted_index.enhancing | 7 |
| abstract_inverted_index.framework | 5 |
| abstract_inverted_index.mechanism | 64 |
| abstract_inverted_index.practical | 94 |
| abstract_inverted_index.two-stage | 61 |
| abstract_inverted_index.Simulation | 71 |
| abstract_inverted_index.aerospace. | 24 |
| abstract_inverted_index.deployment | 100 |
| abstract_inverted_index.guarantees | 41 |
| abstract_inverted_index.influence. | 47 |
| abstract_inverted_index.randomized | 27 |
| abstract_inverted_index.robustness | 31, 67 |
| abstract_inverted_index.smoothing, | 28 |
| abstract_inverted_index.technique, | 33 |
| abstract_inverted_index.adversarial | 46, 82 |
| abstract_inverted_index.demonstrate | 73 |
| abstract_inverted_index.effectively | 77 |
| abstract_inverted_index.efficiency. | 70 |
| abstract_inverted_index.high-stakes | 106 |
| abstract_inverted_index.maintaining | 87 |
| abstract_inverted_index.multi-agent | 16 |
| abstract_inverted_index.propagation | 80 |
| abstract_inverted_index.real-world, | 105 |
| abstract_inverted_index.statistical | 30 |
| abstract_inverted_index.traditional | 49 |
| abstract_inverted_index.performance. | 89 |
| abstract_inverted_index.verification | 50 |
| abstract_inverted_index.certification | 32 |
| abstract_inverted_index.computational | 69 |
| abstract_inverted_index.environments. | 107 |
| abstract_inverted_index.probabilistic | 40 |
| abstract_inverted_index.hallucinations | 85 |
| abstract_inverted_index.safety-critical | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.22721802 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |