Enhancing Semantic Segmentation: Design and Analysis of Improved U-Net Based Deep Convolutional Neural Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.17762/ijritcc.v12i1.7911
In this research, we provide a state-of-the-art method for semantic segmentation that makes use of a modified version of the U-Net architecture, which is itself based on deep convolutional neural networks (CNNs). This research delves into the ins and outs of this cutting-edge approach to semantic segmentation in an effort to boost its precision and productivity. To perform semantic segmentation, a crucial operation in computer vision, each pixel in an image must be assigned to one of many predefined item classes. The proposed Improved U-Net architecture makes use of deep CNNs to efficiently capture complex spatial characteristics while preserving associated context. The study illustrates the efficacy of the Improved U-Net in a variety of real-world circumstances through thorough experimentation and assessment. Intricate feature extraction, down-sampling, and up-sampling are all part of the network's design in order to produce high-quality segmentation results. The study demonstrates comparative evaluations against classic U-Net and other state-of-the-art models and emphasizes the significance of hyperparameter fine-tuning. The suggested architecture shows excellent performance in terms of accuracy and generalization, demonstrating its promise for a variety of applications. Finally, the problem of semantic segmentation is addressed in a novel way. The experimental findings validate the relevance of the architecture's design decisions and demonstrate its potential to boost computer vision by enhancing segmentation precision and efficiency.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17762/ijritcc.v12i1.7911
- https://ijritcc.org/index.php/ijritcc/article/download/7911/6443
- OA Status
- diamond
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386968021
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386968021Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17762/ijritcc.v12i1.7911Digital Object Identifier
- Title
-
Enhancing Semantic Segmentation: Design and Analysis of Improved U-Net Based Deep Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-21Full publication date if available
- Authors
-
Akash Saxena, Prashant Johri, Winner Chukwuemeka Ihechiluru, Vivek Sharma, Megha Rathore, Dharmendra Kumar YadavList of authors in order
- Landing page
-
https://doi.org/10.17762/ijritcc.v12i1.7911Publisher landing page
- PDF URL
-
https://ijritcc.org/index.php/ijritcc/article/download/7911/6443Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijritcc.org/index.php/ijritcc/article/download/7911/6443Direct OA link when available
- Concepts
-
Computer science, Segmentation, Convolutional neural network, Artificial intelligence, Context (archaeology), Variety (cybernetics), Feature (linguistics), Machine learning, Hyperparameter, Generalization, Pattern recognition (psychology), Philosophy, Linguistics, Biology, Mathematics, Paleontology, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386968021 |
|---|---|
| doi | https://doi.org/10.17762/ijritcc.v12i1.7911 |
| ids.doi | https://doi.org/10.17762/ijritcc.v12i1.7911 |
| ids.openalex | https://openalex.org/W4386968021 |
| fwci | 0.0 |
| type | article |
| title | Enhancing Semantic Segmentation: Design and Analysis of Improved U-Net Based Deep Convolutional Neural Networks |
| biblio.issue | 1 |
| biblio.volume | 12 |
| biblio.last_page | 68 |
| biblio.first_page | 58 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9855999946594238 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9814000129699707 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8205862045288086 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.759506344795227 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7125407457351685 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.605475127696991 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.524321436882019 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C136197465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5105584859848022 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[5].display_name | Variety (cybernetics) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4754626154899597 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45587342977523804 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C8642999 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42443716526031494 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[8].display_name | Hyperparameter |
| concepts[9].id | https://openalex.org/C177148314 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41126880049705505 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[9].display_name | Generalization |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3959297239780426 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8205862045288086 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.759506344795227 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.7125407457351685 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.605475127696991 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.524321436882019 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/variety |
| keywords[5].score | 0.5105584859848022 |
| keywords[5].display_name | Variety (cybernetics) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4754626154899597 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.45587342977523804 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/hyperparameter |
| keywords[8].score | 0.42443716526031494 |
| keywords[8].display_name | Hyperparameter |
| keywords[9].id | https://openalex.org/keywords/generalization |
| keywords[9].score | 0.41126880049705505 |
| keywords[9].display_name | Generalization |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3959297239780426 |
| keywords[10].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.17762/ijritcc.v12i1.7911 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764488870 |
| locations[0].source.issn | 2321-8169 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2321-8169 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ijritcc.org/index.php/ijritcc/article/download/7911/6443 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| locations[0].landing_page_url | https://doi.org/10.17762/ijritcc.v12i1.7911 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5091326586 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1820-8024 |
| authorships[0].author.display_name | Akash Saxena |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150263970 |
| authorships[0].affiliations[0].raw_affiliation_string | Professor, Department of Computer Science, Jagannath University, Jaipur, Rajasthan, India |
| authorships[0].institutions[0].id | https://openalex.org/I150263970 |
| authorships[0].institutions[0].ror | https://ror.org/0582p8j71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150263970 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Jagannath University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akash Saxena |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Professor, Department of Computer Science, Jagannath University, Jaipur, Rajasthan, India |
| authorships[1].author.id | https://openalex.org/A5046594273 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8771-5700 |
| authorships[1].author.display_name | Prashant Johri |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I155125381 |
| authorships[1].affiliations[0].raw_affiliation_string | Professor, School of Computing Science and Engineering, Galgotias University, Greater Noida, U P India |
| authorships[1].institutions[0].id | https://openalex.org/I155125381 |
| authorships[1].institutions[0].ror | https://ror.org/02w8ba206 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I155125381 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Galgotias University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prashant Johri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Professor, School of Computing Science and Engineering, Galgotias University, Greater Noida, U P India |
| authorships[2].author.id | https://openalex.org/A5092924064 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Winner Chukwuemeka Ihechiluru |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155125381 |
| authorships[2].affiliations[0].raw_affiliation_string | Student, School of Computing Science and Engineering, Galgotias University , Greater Noida, U P India |
| authorships[2].institutions[0].id | https://openalex.org/I155125381 |
| authorships[2].institutions[0].ror | https://ror.org/02w8ba206 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155125381 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Galgotias University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Winner Chukwuemeka Ihechiluru |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Student, School of Computing Science and Engineering, Galgotias University , Greater Noida, U P India |
| authorships[3].author.id | https://openalex.org/A5100687904 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7233-3803 |
| authorships[3].author.display_name | Vivek Sharma |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[3].affiliations[0].raw_affiliation_string | Assistant Professor, Computer & Communication Engineering, Manipal University Jaipur, Rajasthan, India |
| authorships[3].institutions[0].id | https://openalex.org/I73779912 |
| authorships[3].institutions[0].ror | https://ror.org/040h76494 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Manipal University Jaipur |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vivek Sharma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Assistant Professor, Computer & Communication Engineering, Manipal University Jaipur, Rajasthan, India |
| authorships[4].author.id | https://openalex.org/A5080485819 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Megha Rathore |
| authorships[4].affiliations[0].raw_affiliation_string | Assistant Professor, Computer Science & Engg., Arya College of Engg. & Information Technology, Jaipur, Rajasthan, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Megha Rathore |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Assistant Professor, Computer Science & Engg., Arya College of Engg. & Information Technology, Jaipur, Rajasthan, India |
| authorships[5].author.id | https://openalex.org/A5107871620 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dharmendra Kumar Yadav |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3131129740 |
| authorships[5].affiliations[0].raw_affiliation_string | Assistant Professor, Department of CSE, Bikaner Technical University, Bikaner, India |
| authorships[5].institutions[0].id | https://openalex.org/I3131129740 |
| authorships[5].institutions[0].ror | https://ror.org/04se5tt51 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3131129740 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Bikaner Technical University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dharmendra Yadav |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Assistant Professor, Department of CSE, Bikaner Technical University, Bikaner, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijritcc.org/index.php/ijritcc/article/download/7911/6443 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing Semantic Segmentation: Design and Analysis of Improved U-Net Based Deep Convolutional Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2140186469, https://openalex.org/W4390421286, https://openalex.org/W4280563792, https://openalex.org/W4389724018, https://openalex.org/W4318719684, https://openalex.org/W4318559728, https://openalex.org/W4206951940, https://openalex.org/W4293868382, https://openalex.org/W4382602594, https://openalex.org/W4387850423 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17762/ijritcc.v12i1.7911 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764488870 |
| best_oa_location.source.issn | 2321-8169 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2321-8169 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijritcc.org/index.php/ijritcc/article/download/7911/6443 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| best_oa_location.landing_page_url | https://doi.org/10.17762/ijritcc.v12i1.7911 |
| primary_location.id | doi:10.17762/ijritcc.v12i1.7911 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764488870 |
| primary_location.source.issn | 2321-8169 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2321-8169 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ijritcc.org/index.php/ijritcc/article/download/7911/6443 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal on Recent and Innovation Trends in Computing and Communication |
| primary_location.landing_page_url | https://doi.org/10.17762/ijritcc.v12i1.7911 |
| publication_date | 2023-09-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3121813218, https://openalex.org/W3104522642, https://openalex.org/W2888780969, https://openalex.org/W3004588635, https://openalex.org/W2784014154, https://openalex.org/W2754736524, https://openalex.org/W2621887673, https://openalex.org/W2754120702, https://openalex.org/W2520594445, https://openalex.org/W2965265842, https://openalex.org/W2292153256, https://openalex.org/W2545031104, https://openalex.org/W4225159693, https://openalex.org/W6814879321, https://openalex.org/W6789348778, https://openalex.org/W2964536579, https://openalex.org/W2972866770, https://openalex.org/W2910554758, https://openalex.org/W4205735790, https://openalex.org/W2973004327, https://openalex.org/W2909335916, https://openalex.org/W2919647648, https://openalex.org/W2921099864, https://openalex.org/W2963136578, https://openalex.org/W1808966389, https://openalex.org/W2799406003, https://openalex.org/W4300860834, https://openalex.org/W2974742461, https://openalex.org/W2792834173, https://openalex.org/W2985735500, https://openalex.org/W4288078255, https://openalex.org/W2936997284, https://openalex.org/W3123941068, https://openalex.org/W3080514906, https://openalex.org/W2780202401 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 5, 15, 60, 111, 176, 189 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.an | 48, 69 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.by | 211 |
| abstract_inverted_index.in | 47, 63, 68, 110, 134, 166, 188 |
| abstract_inverted_index.is | 23, 186 |
| abstract_inverted_index.of | 14, 18, 40, 76, 88, 106, 113, 130, 157, 168, 178, 183, 198 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 44, 50, 74, 91, 136, 207 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.The | 81, 101, 141, 160, 192 |
| abstract_inverted_index.all | 128 |
| abstract_inverted_index.and | 38, 54, 119, 125, 149, 153, 170, 203, 215 |
| abstract_inverted_index.are | 127 |
| abstract_inverted_index.for | 8, 175 |
| abstract_inverted_index.ins | 37 |
| abstract_inverted_index.its | 52, 173, 205 |
| abstract_inverted_index.one | 75 |
| abstract_inverted_index.the | 19, 36, 104, 107, 131, 155, 181, 196, 199 |
| abstract_inverted_index.use | 13, 87 |
| abstract_inverted_index.CNNs | 90 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.deep | 27, 89 |
| abstract_inverted_index.each | 66 |
| abstract_inverted_index.into | 35 |
| abstract_inverted_index.item | 79 |
| abstract_inverted_index.many | 77 |
| abstract_inverted_index.must | 71 |
| abstract_inverted_index.outs | 39 |
| abstract_inverted_index.part | 129 |
| abstract_inverted_index.that | 11 |
| abstract_inverted_index.this | 1, 41 |
| abstract_inverted_index.way. | 191 |
| abstract_inverted_index.U-Net | 20, 84, 109, 148 |
| abstract_inverted_index.based | 25 |
| abstract_inverted_index.boost | 51, 208 |
| abstract_inverted_index.image | 70 |
| abstract_inverted_index.makes | 12, 86 |
| abstract_inverted_index.novel | 190 |
| abstract_inverted_index.order | 135 |
| abstract_inverted_index.other | 150 |
| abstract_inverted_index.pixel | 67 |
| abstract_inverted_index.shows | 163 |
| abstract_inverted_index.study | 102, 142 |
| abstract_inverted_index.terms | 167 |
| abstract_inverted_index.which | 22 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.delves | 34 |
| abstract_inverted_index.design | 133, 201 |
| abstract_inverted_index.effort | 49 |
| abstract_inverted_index.itself | 24 |
| abstract_inverted_index.method | 7 |
| abstract_inverted_index.models | 152 |
| abstract_inverted_index.neural | 29 |
| abstract_inverted_index.vision | 210 |
| abstract_inverted_index.(CNNs). | 31 |
| abstract_inverted_index.against | 146 |
| abstract_inverted_index.capture | 93 |
| abstract_inverted_index.classic | 147 |
| abstract_inverted_index.complex | 94 |
| abstract_inverted_index.crucial | 61 |
| abstract_inverted_index.feature | 122 |
| abstract_inverted_index.perform | 57 |
| abstract_inverted_index.problem | 182 |
| abstract_inverted_index.produce | 137 |
| abstract_inverted_index.promise | 174 |
| abstract_inverted_index.provide | 4 |
| abstract_inverted_index.spatial | 95 |
| abstract_inverted_index.through | 116 |
| abstract_inverted_index.variety | 112, 177 |
| abstract_inverted_index.version | 17 |
| abstract_inverted_index.vision, | 65 |
| abstract_inverted_index.Finally, | 180 |
| abstract_inverted_index.Improved | 83, 108 |
| abstract_inverted_index.accuracy | 169 |
| abstract_inverted_index.approach | 43 |
| abstract_inverted_index.assigned | 73 |
| abstract_inverted_index.classes. | 80 |
| abstract_inverted_index.computer | 64, 209 |
| abstract_inverted_index.context. | 100 |
| abstract_inverted_index.efficacy | 105 |
| abstract_inverted_index.findings | 194 |
| abstract_inverted_index.modified | 16 |
| abstract_inverted_index.networks | 30 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.research | 33 |
| abstract_inverted_index.results. | 140 |
| abstract_inverted_index.semantic | 9, 45, 58, 184 |
| abstract_inverted_index.thorough | 117 |
| abstract_inverted_index.validate | 195 |
| abstract_inverted_index.Intricate | 121 |
| abstract_inverted_index.addressed | 187 |
| abstract_inverted_index.decisions | 202 |
| abstract_inverted_index.enhancing | 212 |
| abstract_inverted_index.excellent | 164 |
| abstract_inverted_index.network's | 132 |
| abstract_inverted_index.operation | 62 |
| abstract_inverted_index.potential | 206 |
| abstract_inverted_index.precision | 53, 214 |
| abstract_inverted_index.relevance | 197 |
| abstract_inverted_index.research, | 2 |
| abstract_inverted_index.suggested | 161 |
| abstract_inverted_index.associated | 99 |
| abstract_inverted_index.emphasizes | 154 |
| abstract_inverted_index.predefined | 78 |
| abstract_inverted_index.preserving | 98 |
| abstract_inverted_index.real-world | 114 |
| abstract_inverted_index.assessment. | 120 |
| abstract_inverted_index.comparative | 144 |
| abstract_inverted_index.demonstrate | 204 |
| abstract_inverted_index.efficiency. | 216 |
| abstract_inverted_index.efficiently | 92 |
| abstract_inverted_index.evaluations | 145 |
| abstract_inverted_index.extraction, | 123 |
| abstract_inverted_index.illustrates | 103 |
| abstract_inverted_index.performance | 165 |
| abstract_inverted_index.up-sampling | 126 |
| abstract_inverted_index.architecture | 85, 162 |
| abstract_inverted_index.cutting-edge | 42 |
| abstract_inverted_index.demonstrates | 143 |
| abstract_inverted_index.experimental | 193 |
| abstract_inverted_index.fine-tuning. | 159 |
| abstract_inverted_index.high-quality | 138 |
| abstract_inverted_index.segmentation | 10, 46, 139, 185, 213 |
| abstract_inverted_index.significance | 156 |
| abstract_inverted_index.applications. | 179 |
| abstract_inverted_index.architecture, | 21 |
| abstract_inverted_index.circumstances | 115 |
| abstract_inverted_index.convolutional | 28 |
| abstract_inverted_index.demonstrating | 172 |
| abstract_inverted_index.productivity. | 55 |
| abstract_inverted_index.segmentation, | 59 |
| abstract_inverted_index.architecture's | 200 |
| abstract_inverted_index.down-sampling, | 124 |
| abstract_inverted_index.hyperparameter | 158 |
| abstract_inverted_index.characteristics | 96 |
| abstract_inverted_index.experimentation | 118 |
| abstract_inverted_index.generalization, | 171 |
| abstract_inverted_index.state-of-the-art | 6, 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.13780826 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |