Enhancing Sentiment Classification with Machine Learning and Combinatorial Fusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.27014
This paper presents a novel approach to sentiment classification using the application of Combinatorial Fusion Analysis (CFA) to integrate an ensemble of diverse machine learning models, achieving state-of-the-art accuracy on the IMDB sentiment analysis dataset of 97.072\%. CFA leverages the concept of cognitive diversity, which utilizes rank-score characteristic functions to quantify the dissimilarity between models and strategically combine their predictions. This is in contrast to the common process of scaling the size of individual models, and thus is comparatively efficient in computing resource use. Experimental results also indicate that CFA outperforms traditional ensemble methods by effectively computing and employing model diversity. The approach in this paper implements the combination of a transformer-based model of the RoBERTa architecture with traditional machine learning models, including Random Forest, SVM, and XGBoost.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.27014
- https://arxiv.org/pdf/2510.27014
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415914367
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415914367Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.27014Digital Object Identifier
- Title
-
Enhancing Sentiment Classification with Machine Learning and Combinatorial FusionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-30Full publication date if available
- Authors
-
Scott B. Patten, Pin‐Yu Chen, Christina Schweikert, Daniel HsuList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.27014Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.27014Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.27014Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415914367 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.27014 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.27014 |
| ids.openalex | https://openalex.org/W4415914367 |
| fwci | |
| type | preprint |
| title | Enhancing Sentiment Classification with Machine Learning and Combinatorial Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.27014 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.27014 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.27014 |
| locations[1].id | doi:10.48550/arxiv.2510.27014 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.27014 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5012744052 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9871-4041 |
| authorships[0].author.display_name | Scott B. Patten |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Patten, Sean |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050344371 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1039-8369 |
| authorships[1].author.display_name | Pin‐Yu Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Pin-Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036063517 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Christina Schweikert |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Schweikert, Christina |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067069179 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Daniel Hsu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hsu, D. Frank |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.27014 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-05T00:00:00 |
| display_name | Enhancing Sentiment Classification with Machine Learning and Combinatorial Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.27014 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.27014 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.27014 |
| primary_location.id | pmh:oai:arXiv.org:2510.27014 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.27014 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.27014 |
| publication_date | 2025-10-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 110 |
| abstract_inverted_index.an | 19 |
| abstract_inverted_index.by | 94 |
| abstract_inverted_index.in | 62, 80, 103 |
| abstract_inverted_index.is | 61, 77 |
| abstract_inverted_index.of | 12, 21, 35, 41, 68, 72, 109, 113 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.to | 6, 17, 49, 64 |
| abstract_inverted_index.CFA | 37, 89 |
| abstract_inverted_index.The | 101 |
| abstract_inverted_index.and | 55, 75, 97, 126 |
| abstract_inverted_index.the | 10, 30, 39, 51, 65, 70, 107, 114 |
| abstract_inverted_index.IMDB | 31 |
| abstract_inverted_index.SVM, | 125 |
| abstract_inverted_index.This | 0, 60 |
| abstract_inverted_index.also | 86 |
| abstract_inverted_index.size | 71 |
| abstract_inverted_index.that | 88 |
| abstract_inverted_index.this | 104 |
| abstract_inverted_index.thus | 76 |
| abstract_inverted_index.use. | 83 |
| abstract_inverted_index.with | 117 |
| abstract_inverted_index.(CFA) | 16 |
| abstract_inverted_index.model | 99, 112 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.paper | 1, 105 |
| abstract_inverted_index.their | 58 |
| abstract_inverted_index.using | 9 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.Fusion | 14 |
| abstract_inverted_index.Random | 123 |
| abstract_inverted_index.common | 66 |
| abstract_inverted_index.models | 54 |
| abstract_inverted_index.Forest, | 124 |
| abstract_inverted_index.RoBERTa | 115 |
| abstract_inverted_index.between | 53 |
| abstract_inverted_index.combine | 57 |
| abstract_inverted_index.concept | 40 |
| abstract_inverted_index.dataset | 34 |
| abstract_inverted_index.diverse | 22 |
| abstract_inverted_index.machine | 23, 119 |
| abstract_inverted_index.methods | 93 |
| abstract_inverted_index.models, | 25, 74, 121 |
| abstract_inverted_index.process | 67 |
| abstract_inverted_index.results | 85 |
| abstract_inverted_index.scaling | 69 |
| abstract_inverted_index.Analysis | 15 |
| abstract_inverted_index.XGBoost. | 127 |
| abstract_inverted_index.accuracy | 28 |
| abstract_inverted_index.analysis | 33 |
| abstract_inverted_index.approach | 5, 102 |
| abstract_inverted_index.contrast | 63 |
| abstract_inverted_index.ensemble | 20, 92 |
| abstract_inverted_index.indicate | 87 |
| abstract_inverted_index.learning | 24, 120 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.quantify | 50 |
| abstract_inverted_index.resource | 82 |
| abstract_inverted_index.utilizes | 45 |
| abstract_inverted_index.97.072\%. | 36 |
| abstract_inverted_index.achieving | 26 |
| abstract_inverted_index.cognitive | 42 |
| abstract_inverted_index.computing | 81, 96 |
| abstract_inverted_index.efficient | 79 |
| abstract_inverted_index.employing | 98 |
| abstract_inverted_index.functions | 48 |
| abstract_inverted_index.including | 122 |
| abstract_inverted_index.integrate | 18 |
| abstract_inverted_index.leverages | 38 |
| abstract_inverted_index.sentiment | 7, 32 |
| abstract_inverted_index.diversity, | 43 |
| abstract_inverted_index.diversity. | 100 |
| abstract_inverted_index.implements | 106 |
| abstract_inverted_index.individual | 73 |
| abstract_inverted_index.rank-score | 46 |
| abstract_inverted_index.application | 11 |
| abstract_inverted_index.combination | 108 |
| abstract_inverted_index.effectively | 95 |
| abstract_inverted_index.outperforms | 90 |
| abstract_inverted_index.traditional | 91, 118 |
| abstract_inverted_index.Experimental | 84 |
| abstract_inverted_index.architecture | 116 |
| abstract_inverted_index.predictions. | 59 |
| abstract_inverted_index.Combinatorial | 13 |
| abstract_inverted_index.comparatively | 78 |
| abstract_inverted_index.dissimilarity | 52 |
| abstract_inverted_index.strategically | 56 |
| abstract_inverted_index.characteristic | 47 |
| abstract_inverted_index.classification | 8 |
| abstract_inverted_index.state-of-the-art | 27 |
| abstract_inverted_index.transformer-based | 111 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |