Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and Efficiency Article Swipe
This paper investigates and develops methods for detecting small objects in large-scale aerial images. Current approaches for detecting small objects in aerial images often involve image cropping and modifications to detector network architectures. Techniques such as sliding window cropping and architectural enhancements, including higher-resolution feature maps and attention mechanisms, are commonly employed. Given the growing importance of aerial imagery in various critical and industrial applications, the need for robust frameworks for small object detection becomes imperative. To address this need, we adopted the base SW-YOLO approach to enhance speed and accuracy in small object detection by refining cropping dimensions and overlap in sliding window usage and subsequently enhanced it through architectural modifications. we propose a novel model by modifying the base model architecture, including advanced feature extraction modules in the neck for feature map enhancement, integrating CBAM in the backbone to preserve spatial and channel information, and introducing a new head to boost small object detection accuracy. Finally, we compared our method with SAHI, one of the most powerful frameworks for processing large-scale images, and CZDet, which is also based on image cropping, achieving significant improvements in accuracy. The proposed model achieves significant accuracy gains on the VisDrone2019 dataset, outperforming baseline YOLOv5L detection by a substantial margin. Specifically, the final proposed model elevates the mAP .5.5 accuracy on the VisDrone2019 dataset from the base accuracy of 35.5 achieved by the YOLOv5L detector to 61.2. Notably, the accuracy of CZDet, which is another classic method applied to this dataset, is 58.36. This research demonstrates a significant improvement, achieving an increase in accuracy from 35.5 to 61.2.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2512.07379
- https://arxiv.org/pdf/2512.07379
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7113915223
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7113915223Canonical identifier for this work in OpenAlex
- Title
-
Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and EfficiencyWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Moghadami, Mahila, Keyvanrad, Mohammad Ali, Sabaghian, MelikaList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.07379Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.07379Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.07379Direct OA link when available
- Concepts
-
Object detection, Artificial intelligence, Computer science, Aerial image, Feature (linguistics), Computer vision, Sliding window protocol, Feature extraction, Object (grammar), Detector, Window (computing), Image (mathematics), Pattern recognition (psychology), Channel (broadcasting), Change detection, Base (topology), Cropping, Feature detection (computer vision), Row, Baseline (sea), Image processing, Data mining, Aerial imageryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7113915223 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7113915223 |
| fwci | 0.0 |
| type | article |
| title | Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and Efficiency |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9546107053756714 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.005825547967106104 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.0038211068604141474 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776151529 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6979140639305115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[0].display_name | Object detection |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6733156442642212 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6717380881309509 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776429412 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6050148606300354 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4688011 |
| concepts[3].display_name | Aerial image |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5992764830589294 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5806161165237427 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C102392041 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5757098197937012 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[6].display_name | Sliding window protocol |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5675075650215149 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C2781238097 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5179147720336914 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[8].display_name | Object (grammar) |
| concepts[9].id | https://openalex.org/C94915269 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49828553199768066 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[9].display_name | Detector |
| concepts[10].id | https://openalex.org/C2778751112 |
| concepts[10].level | 2 |
| concepts[10].score | 0.446870893239975 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[10].display_name | Window (computing) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39514440298080444 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3912416398525238 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C127162648 |
| concepts[13].level | 2 |
| concepts[13].score | 0.35213589668273926 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[13].display_name | Channel (broadcasting) |
| concepts[14].id | https://openalex.org/C203595873 |
| concepts[14].level | 2 |
| concepts[14].score | 0.34371596574783325 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25389927 |
| concepts[14].display_name | Change detection |
| concepts[15].id | https://openalex.org/C42058472 |
| concepts[15].level | 2 |
| concepts[15].score | 0.31839555501937866 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[15].display_name | Base (topology) |
| concepts[16].id | https://openalex.org/C13558536 |
| concepts[16].level | 3 |
| concepts[16].score | 0.31591466069221497 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q785116 |
| concepts[16].display_name | Cropping |
| concepts[17].id | https://openalex.org/C126422989 |
| concepts[17].level | 4 |
| concepts[17].score | 0.310013085603714 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q93586 |
| concepts[17].display_name | Feature detection (computer vision) |
| concepts[18].id | https://openalex.org/C135598885 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3049754202365875 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1366302 |
| concepts[18].display_name | Row |
| concepts[19].id | https://openalex.org/C12725497 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2964008152484894 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[19].display_name | Baseline (sea) |
| concepts[20].id | https://openalex.org/C9417928 |
| concepts[20].level | 3 |
| concepts[20].score | 0.2791682481765747 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[20].display_name | Image processing |
| concepts[21].id | https://openalex.org/C124101348 |
| concepts[21].level | 1 |
| concepts[21].score | 0.26845040917396545 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[21].display_name | Data mining |
| concepts[22].id | https://openalex.org/C2987819851 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2509980797767639 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q191839 |
| concepts[22].display_name | Aerial imagery |
| keywords[0].id | https://openalex.org/keywords/object-detection |
| keywords[0].score | 0.6979140639305115 |
| keywords[0].display_name | Object detection |
| keywords[1].id | https://openalex.org/keywords/aerial-image |
| keywords[1].score | 0.6050148606300354 |
| keywords[1].display_name | Aerial image |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.5992764830589294 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[3].score | 0.5757098197937012 |
| keywords[3].display_name | Sliding window protocol |
| keywords[4].id | https://openalex.org/keywords/feature-extraction |
| keywords[4].score | 0.5675075650215149 |
| keywords[4].display_name | Feature extraction |
| keywords[5].id | https://openalex.org/keywords/object |
| keywords[5].score | 0.5179147720336914 |
| keywords[5].display_name | Object (grammar) |
| keywords[6].id | https://openalex.org/keywords/detector |
| keywords[6].score | 0.49828553199768066 |
| keywords[6].display_name | Detector |
| keywords[7].id | https://openalex.org/keywords/window |
| keywords[7].score | 0.446870893239975 |
| keywords[7].display_name | Window (computing) |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.07379 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.07379 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.07379 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Moghadami, Mahila |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Moghadami, Mahila |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A4227686499 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Keyvanrad, Mohammad Ali |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keyvanrad, Mohammad Ali |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A4295693925 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sabaghian, Melika |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sabaghian, Melika |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.07379 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and Efficiency |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:24:52.286860 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9546107053756714 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.07379 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.07379 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.07379 |
| primary_location.id | pmh:oai:arXiv.org:2512.07379 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.07379 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.07379 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 114, 148, 204, 253 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.an | 257 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.by | 95, 117, 203, 228 |
| abstract_inverted_index.in | 10, 20, 59, 91, 101, 128, 137, 186, 259 |
| abstract_inverted_index.is | 177, 240, 248 |
| abstract_inverted_index.it | 108 |
| abstract_inverted_index.of | 56, 165, 225, 237 |
| abstract_inverted_index.on | 180, 195, 217 |
| abstract_inverted_index.to | 29, 86, 140, 151, 232, 245, 263 |
| abstract_inverted_index.we | 80, 112, 158 |
| abstract_inverted_index.The | 188 |
| abstract_inverted_index.and | 3, 27, 39, 46, 62, 89, 99, 105, 143, 146, 174 |
| abstract_inverted_index.are | 49 |
| abstract_inverted_index.for | 6, 16, 67, 70, 131, 170 |
| abstract_inverted_index.mAP | 214 |
| abstract_inverted_index.map | 133 |
| abstract_inverted_index.new | 149 |
| abstract_inverted_index.one | 164 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.the | 53, 65, 82, 119, 129, 138, 166, 196, 208, 213, 218, 222, 229, 235 |
| abstract_inverted_index..5.5 | 215 |
| abstract_inverted_index.35.5 | 226, 262 |
| abstract_inverted_index.CBAM | 136 |
| abstract_inverted_index.This | 0, 250 |
| abstract_inverted_index.also | 178 |
| abstract_inverted_index.base | 83, 120, 223 |
| abstract_inverted_index.from | 221, 261 |
| abstract_inverted_index.head | 150 |
| abstract_inverted_index.maps | 45 |
| abstract_inverted_index.most | 167 |
| abstract_inverted_index.neck | 130 |
| abstract_inverted_index.need | 66 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.this | 78, 246 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.61.2. | 233, 264 |
| abstract_inverted_index.Given | 52 |
| abstract_inverted_index.SAHI, | 163 |
| abstract_inverted_index.based | 179 |
| abstract_inverted_index.boost | 152 |
| abstract_inverted_index.final | 209 |
| abstract_inverted_index.gains | 194 |
| abstract_inverted_index.image | 25, 181 |
| abstract_inverted_index.model | 116, 121, 190, 211 |
| abstract_inverted_index.need, | 79 |
| abstract_inverted_index.novel | 115 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.small | 8, 18, 71, 92, 153 |
| abstract_inverted_index.speed | 88 |
| abstract_inverted_index.usage | 104 |
| abstract_inverted_index.which | 176, 239 |
| abstract_inverted_index.58.36. | 249 |
| abstract_inverted_index.CZDet, | 175, 238 |
| abstract_inverted_index.aerial | 12, 21, 57 |
| abstract_inverted_index.images | 22 |
| abstract_inverted_index.method | 161, 243 |
| abstract_inverted_index.object | 72, 93, 154 |
| abstract_inverted_index.robust | 68 |
| abstract_inverted_index.window | 37, 103 |
| abstract_inverted_index.Current | 14 |
| abstract_inverted_index.SW-YOLO | 84 |
| abstract_inverted_index.YOLOv5L | 201, 230 |
| abstract_inverted_index.address | 77 |
| abstract_inverted_index.adopted | 81 |
| abstract_inverted_index.another | 241 |
| abstract_inverted_index.applied | 244 |
| abstract_inverted_index.becomes | 74 |
| abstract_inverted_index.channel | 144 |
| abstract_inverted_index.classic | 242 |
| abstract_inverted_index.dataset | 220 |
| abstract_inverted_index.enhance | 87 |
| abstract_inverted_index.feature | 44, 125, 132 |
| abstract_inverted_index.growing | 54 |
| abstract_inverted_index.imagery | 58 |
| abstract_inverted_index.images, | 173 |
| abstract_inverted_index.images. | 13 |
| abstract_inverted_index.involve | 24 |
| abstract_inverted_index.margin. | 206 |
| abstract_inverted_index.methods | 5 |
| abstract_inverted_index.modules | 127 |
| abstract_inverted_index.network | 31 |
| abstract_inverted_index.objects | 9, 19 |
| abstract_inverted_index.overlap | 100 |
| abstract_inverted_index.propose | 113 |
| abstract_inverted_index.sliding | 36, 102 |
| abstract_inverted_index.spatial | 142 |
| abstract_inverted_index.through | 109 |
| abstract_inverted_index.various | 60 |
| abstract_inverted_index.Finally, | 157 |
| abstract_inverted_index.Notably, | 234 |
| abstract_inverted_index.accuracy | 90, 193, 216, 224, 236, 260 |
| abstract_inverted_index.achieved | 227 |
| abstract_inverted_index.achieves | 191 |
| abstract_inverted_index.advanced | 124 |
| abstract_inverted_index.approach | 85 |
| abstract_inverted_index.backbone | 139 |
| abstract_inverted_index.baseline | 200 |
| abstract_inverted_index.commonly | 50 |
| abstract_inverted_index.compared | 159 |
| abstract_inverted_index.critical | 61 |
| abstract_inverted_index.cropping | 26, 38, 97 |
| abstract_inverted_index.dataset, | 198, 247 |
| abstract_inverted_index.detector | 30, 231 |
| abstract_inverted_index.develops | 4 |
| abstract_inverted_index.elevates | 212 |
| abstract_inverted_index.enhanced | 107 |
| abstract_inverted_index.increase | 258 |
| abstract_inverted_index.powerful | 168 |
| abstract_inverted_index.preserve | 141 |
| abstract_inverted_index.proposed | 189, 210 |
| abstract_inverted_index.refining | 96 |
| abstract_inverted_index.research | 251 |
| abstract_inverted_index.accuracy. | 156, 187 |
| abstract_inverted_index.achieving | 183, 256 |
| abstract_inverted_index.attention | 47 |
| abstract_inverted_index.cropping, | 182 |
| abstract_inverted_index.detecting | 7, 17 |
| abstract_inverted_index.detection | 73, 94, 155, 202 |
| abstract_inverted_index.employed. | 51 |
| abstract_inverted_index.including | 42, 123 |
| abstract_inverted_index.modifying | 118 |
| abstract_inverted_index.Techniques | 33 |
| abstract_inverted_index.approaches | 15 |
| abstract_inverted_index.dimensions | 98 |
| abstract_inverted_index.extraction | 126 |
| abstract_inverted_index.frameworks | 69, 169 |
| abstract_inverted_index.importance | 55 |
| abstract_inverted_index.industrial | 63 |
| abstract_inverted_index.processing | 171 |
| abstract_inverted_index.imperative. | 75 |
| abstract_inverted_index.integrating | 135 |
| abstract_inverted_index.introducing | 147 |
| abstract_inverted_index.large-scale | 11, 172 |
| abstract_inverted_index.mechanisms, | 48 |
| abstract_inverted_index.significant | 184, 192, 254 |
| abstract_inverted_index.substantial | 205 |
| abstract_inverted_index.VisDrone2019 | 197, 219 |
| abstract_inverted_index.demonstrates | 252 |
| abstract_inverted_index.enhancement, | 134 |
| abstract_inverted_index.improvement, | 255 |
| abstract_inverted_index.improvements | 185 |
| abstract_inverted_index.information, | 145 |
| abstract_inverted_index.investigates | 2 |
| abstract_inverted_index.subsequently | 106 |
| abstract_inverted_index.Specifically, | 207 |
| abstract_inverted_index.applications, | 64 |
| abstract_inverted_index.architectural | 40, 110 |
| abstract_inverted_index.architecture, | 122 |
| abstract_inverted_index.enhancements, | 41 |
| abstract_inverted_index.modifications | 28 |
| abstract_inverted_index.outperforming | 199 |
| abstract_inverted_index.architectures. | 32 |
| abstract_inverted_index.modifications. | 111 |
| abstract_inverted_index.higher-resolution | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.81142819 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |