Enhancing stock price data analysis through variants of principal component analysis Article Swipe
Teck Xiang Seow
,
Tzung Hsuen Khoo
,
Dharini Pathmanathan
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8201874
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8201874
The dataset used in the research titled "Enhancing stock price data analysis through variants of principal component analysis". It includes the daily closing prices of top 100 stocks in S&P500 from 29th March 2020 to 28th March 2023.
Related Topics
Concepts
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.8201874
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393665181
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393665181Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8201874Digital Object Identifier
- Title
-
Enhancing stock price data analysis through variants of principal component analysisWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Teck Xiang Seow, Tzung Hsuen Khoo, Dharini PathmanathanList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.8201874Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.8201874Direct OA link when available
- Concepts
-
Principal component analysis, Component analysis, Stock (firearms), Mathematics, Statistics, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393665181 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8201874 |
| ids.doi | https://doi.org/10.5281/zenodo.8201874 |
| ids.openalex | https://openalex.org/W4393665181 |
| fwci | |
| type | dataset |
| title | Enhancing stock price data analysis through variants of principal component analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11918 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.7281000018119812 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Forecasting Techniques and Applications |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.6603999733924866 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C27438332 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8288961052894592 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[0].display_name | Principal component analysis |
| concepts[1].id | https://openalex.org/C2780692498 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5142316222190857 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16950721 |
| concepts[1].display_name | Component analysis |
| concepts[2].id | https://openalex.org/C204036174 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4350113272666931 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[2].display_name | Stock (firearms) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2799903452396393 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.25529003143310547 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1363758146762848 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C166957645 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[6].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[0].score | 0.8288961052894592 |
| keywords[0].display_name | Principal component analysis |
| keywords[1].id | https://openalex.org/keywords/component-analysis |
| keywords[1].score | 0.5142316222190857 |
| keywords[1].display_name | Component analysis |
| keywords[2].id | https://openalex.org/keywords/stock |
| keywords[2].score | 0.4350113272666931 |
| keywords[2].display_name | Stock (firearms) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.2799903452396393 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.25529003143310547 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.1363758146762848 |
| keywords[5].display_name | Geography |
| language | en |
| locations[0].id | doi:10.5281/zenodo.8201874 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.8201874 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5094316335 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Teck Xiang Seow |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[0].affiliations[0].raw_affiliation_string | Universiti Malaya |
| authorships[0].institutions[0].id | https://openalex.org/I33849332 |
| authorships[0].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | University of Malaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Teck Xiang Seow |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universiti Malaya |
| authorships[1].author.id | https://openalex.org/A5064827913 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1908-4860 |
| authorships[1].author.display_name | Tzung Hsuen Khoo |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[1].affiliations[0].raw_affiliation_string | Universiti Malaya |
| authorships[1].institutions[0].id | https://openalex.org/I33849332 |
| authorships[1].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | University of Malaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tzung Hsuen Khoo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universiti Malaya |
| authorships[2].author.id | https://openalex.org/A5016896235 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3279-4031 |
| authorships[2].author.display_name | Dharini Pathmanathan |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[2].affiliations[0].raw_affiliation_string | Universiti Malaya |
| authorships[2].institutions[0].id | https://openalex.org/I33849332 |
| authorships[2].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | University of Malaya |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dharini Pathmanathan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universiti Malaya |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.8201874 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing stock price data analysis through variants of principal component analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11918 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.7281000018119812 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Forecasting Techniques and Applications |
| related_works | https://openalex.org/W2073510591, https://openalex.org/W1888749522, https://openalex.org/W3027745756, https://openalex.org/W1974824484, https://openalex.org/W2371382315, https://openalex.org/W2370389335, https://openalex.org/W2413079988, https://openalex.org/W1589460923, https://openalex.org/W2390662382, https://openalex.org/W2087310503 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.8201874 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.8201874 |
| primary_location.id | doi:10.5281/zenodo.8201874 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.8201874 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.It | 18 |
| abstract_inverted_index.in | 3, 28 |
| abstract_inverted_index.of | 14, 24 |
| abstract_inverted_index.to | 34 |
| abstract_inverted_index.100 | 26 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.the | 4, 20 |
| abstract_inverted_index.top | 25 |
| abstract_inverted_index.2020 | 33 |
| abstract_inverted_index.28th | 35 |
| abstract_inverted_index.29th | 31 |
| abstract_inverted_index.data | 10 |
| abstract_inverted_index.from | 30 |
| abstract_inverted_index.used | 2 |
| abstract_inverted_index.2023. | 37 |
| abstract_inverted_index.March | 32, 36 |
| abstract_inverted_index.daily | 21 |
| abstract_inverted_index.price | 9 |
| abstract_inverted_index.stock | 8 |
| abstract_inverted_index.prices | 23 |
| abstract_inverted_index.stocks | 27 |
| abstract_inverted_index.titled | 6 |
| abstract_inverted_index.closing | 22 |
| abstract_inverted_index.dataset | 1 |
| abstract_inverted_index.through | 12 |
| abstract_inverted_index.analysis | 11 |
| abstract_inverted_index.includes | 19 |
| abstract_inverted_index.research | 5 |
| abstract_inverted_index.variants | 13 |
| abstract_inverted_index.component | 16 |
| abstract_inverted_index.principal | 15 |
| abstract_inverted_index."Enhancing | 7 |
| abstract_inverted_index.S&P500 | 29 |
| abstract_inverted_index.analysis". | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |