Enhancing targeted transferability via feature space fine-tuning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.02727
Adversarial examples (AEs) have been extensively studied due to their potential for privacy protection and inspiring robust neural networks. Yet, making a targeted AE transferable across unknown models remains challenging. In this paper, to alleviate the overfitting dilemma common in an AE crafted by existing simple iterative attacks, we propose fine-tuning it in the feature space. Specifically, starting with an AE generated by a baseline attack, we encourage the features conducive to the target class and discourage the features to the original class in a middle layer of the source model. Extensive experiments demonstrate that only a few iterations of fine-tuning can boost existing attacks' targeted transferability nontrivially and universally. Our results also verify that the simple iterative attacks can yield comparable or even better transferability than the resource-intensive methods, which rest on training target-specific classifiers or generators with additional data. The code is available at: github.com/zengh5/TA_feature_FT.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.02727
- https://arxiv.org/pdf/2401.02727
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390690167
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390690167Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.02727Digital Object Identifier
- Title
-
Enhancing targeted transferability via feature space fine-tuningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-05Full publication date if available
- Authors
-
Hui Zeng, Biwei Chen, Anjie PengList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.02727Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.02727Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.02727Direct OA link when available
- Concepts
-
Overfitting, Computer science, Transferability, Feature (linguistics), Machine learning, Fidelity, Simple (philosophy), Class (philosophy), Artificial intelligence, Source code, Code (set theory), Feature vector, Fine-tuning, Data mining, Artificial neural network, Set (abstract data type), Quantum mechanics, Linguistics, Logit, Epistemology, Physics, Programming language, Philosophy, Telecommunications, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390690167 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.02727 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.02727 |
| ids.openalex | https://openalex.org/W4390690167 |
| fwci | |
| type | preprint |
| title | Enhancing targeted transferability via feature space fine-tuning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10645 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9018999934196472 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2711 |
| topics[1].subfield.display_name | Emergency Medicine |
| topics[1].display_name | Cardiac Arrest and Resuscitation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9303669929504395 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7657243013381958 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C61272859 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6791782379150391 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[2].display_name | Transferability |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6141831874847412 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5456975698471069 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2776459999 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5163010954856873 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[5].display_name | Fidelity |
| concepts[6].id | https://openalex.org/C2780586882 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5135248303413391 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[6].display_name | Simple (philosophy) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.500262975692749 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.497470885515213 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C43126263 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4725199341773987 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[9].display_name | Source code |
| concepts[10].id | https://openalex.org/C2776760102 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4694977104663849 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[10].display_name | Code (set theory) |
| concepts[11].id | https://openalex.org/C83665646 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45636695623397827 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[11].display_name | Feature vector |
| concepts[12].id | https://openalex.org/C157524613 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43627652525901794 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2828883 |
| concepts[12].display_name | Fine-tuning |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3406173586845398 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.28630661964416504 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C177264268 |
| concepts[15].level | 2 |
| concepts[15].score | 0.26689451932907104 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[15].display_name | Set (abstract data type) |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C140331021 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[18].display_name | Logit |
| concepts[19].id | https://openalex.org/C111472728 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[19].display_name | Epistemology |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C138885662 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[22].display_name | Philosophy |
| concepts[23].id | https://openalex.org/C76155785 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[23].display_name | Telecommunications |
| concepts[24].id | https://openalex.org/C111919701 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[24].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.9303669929504395 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7657243013381958 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transferability |
| keywords[2].score | 0.6791782379150391 |
| keywords[2].display_name | Transferability |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.6141831874847412 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5456975698471069 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/fidelity |
| keywords[5].score | 0.5163010954856873 |
| keywords[5].display_name | Fidelity |
| keywords[6].id | https://openalex.org/keywords/simple |
| keywords[6].score | 0.5135248303413391 |
| keywords[6].display_name | Simple (philosophy) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.500262975692749 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.497470885515213 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/source-code |
| keywords[9].score | 0.4725199341773987 |
| keywords[9].display_name | Source code |
| keywords[10].id | https://openalex.org/keywords/code |
| keywords[10].score | 0.4694977104663849 |
| keywords[10].display_name | Code (set theory) |
| keywords[11].id | https://openalex.org/keywords/feature-vector |
| keywords[11].score | 0.45636695623397827 |
| keywords[11].display_name | Feature vector |
| keywords[12].id | https://openalex.org/keywords/fine-tuning |
| keywords[12].score | 0.43627652525901794 |
| keywords[12].display_name | Fine-tuning |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3406173586845398 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.28630661964416504 |
| keywords[14].display_name | Artificial neural network |
| keywords[15].id | https://openalex.org/keywords/set |
| keywords[15].score | 0.26689451932907104 |
| keywords[15].display_name | Set (abstract data type) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.02727 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.02727 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.02727 |
| locations[1].id | doi:10.48550/arxiv.2401.02727 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.02727 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101708043 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7612-8524 |
| authorships[0].author.display_name | Hui Zeng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeng, Hui |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059970501 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8239-4864 |
| authorships[1].author.display_name | Biwei Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Biwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014092332 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9287-7536 |
| authorships[2].author.display_name | Anjie Peng |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Peng, Anjie |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.02727 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Enhancing targeted transferability via feature space fine-tuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W4297676672, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W4376166922, https://openalex.org/W4378510483, https://openalex.org/W4221142204 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.02727 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.02727 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.02727 |
| primary_location.id | pmh:oai:arXiv.org:2401.02727 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.02727 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.02727 |
| publication_date | 2024-01-05 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 63, 84, 96 |
| abstract_inverted_index.AE | 23, 41, 60 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.an | 40, 59 |
| abstract_inverted_index.by | 43, 62 |
| abstract_inverted_index.in | 39, 52, 83 |
| abstract_inverted_index.is | 143 |
| abstract_inverted_index.it | 51 |
| abstract_inverted_index.of | 87, 99 |
| abstract_inverted_index.on | 132 |
| abstract_inverted_index.or | 122, 136 |
| abstract_inverted_index.to | 8, 33, 71, 79 |
| abstract_inverted_index.we | 48, 66 |
| abstract_inverted_index.Our | 110 |
| abstract_inverted_index.The | 141 |
| abstract_inverted_index.and | 14, 75, 108 |
| abstract_inverted_index.at: | 145 |
| abstract_inverted_index.can | 101, 119 |
| abstract_inverted_index.due | 7 |
| abstract_inverted_index.few | 97 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.the | 35, 53, 68, 72, 77, 80, 88, 115, 127 |
| abstract_inverted_index.Yet, | 19 |
| abstract_inverted_index.also | 112 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.code | 142 |
| abstract_inverted_index.even | 123 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.only | 95 |
| abstract_inverted_index.rest | 131 |
| abstract_inverted_index.than | 126 |
| abstract_inverted_index.that | 94, 114 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.with | 58, 138 |
| abstract_inverted_index.(AEs) | 2 |
| abstract_inverted_index.boost | 102 |
| abstract_inverted_index.class | 74, 82 |
| abstract_inverted_index.data. | 140 |
| abstract_inverted_index.layer | 86 |
| abstract_inverted_index.their | 9 |
| abstract_inverted_index.which | 130 |
| abstract_inverted_index.yield | 120 |
| abstract_inverted_index.across | 25 |
| abstract_inverted_index.better | 124 |
| abstract_inverted_index.common | 38 |
| abstract_inverted_index.making | 20 |
| abstract_inverted_index.middle | 85 |
| abstract_inverted_index.model. | 90 |
| abstract_inverted_index.models | 27 |
| abstract_inverted_index.neural | 17 |
| abstract_inverted_index.paper, | 32 |
| abstract_inverted_index.robust | 16 |
| abstract_inverted_index.simple | 45, 116 |
| abstract_inverted_index.source | 89 |
| abstract_inverted_index.space. | 55 |
| abstract_inverted_index.target | 73 |
| abstract_inverted_index.verify | 113 |
| abstract_inverted_index.attack, | 65 |
| abstract_inverted_index.attacks | 118 |
| abstract_inverted_index.crafted | 42 |
| abstract_inverted_index.dilemma | 37 |
| abstract_inverted_index.feature | 54 |
| abstract_inverted_index.privacy | 12 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.remains | 28 |
| abstract_inverted_index.results | 111 |
| abstract_inverted_index.studied | 6 |
| abstract_inverted_index.unknown | 26 |
| abstract_inverted_index.attacks' | 104 |
| abstract_inverted_index.attacks, | 47 |
| abstract_inverted_index.baseline | 64 |
| abstract_inverted_index.examples | 1 |
| abstract_inverted_index.existing | 44, 103 |
| abstract_inverted_index.features | 69, 78 |
| abstract_inverted_index.methods, | 129 |
| abstract_inverted_index.original | 81 |
| abstract_inverted_index.starting | 57 |
| abstract_inverted_index.targeted | 22, 105 |
| abstract_inverted_index.training | 133 |
| abstract_inverted_index.Extensive | 91 |
| abstract_inverted_index.alleviate | 34 |
| abstract_inverted_index.available | 144 |
| abstract_inverted_index.conducive | 70 |
| abstract_inverted_index.encourage | 67 |
| abstract_inverted_index.generated | 61 |
| abstract_inverted_index.inspiring | 15 |
| abstract_inverted_index.iterative | 46, 117 |
| abstract_inverted_index.networks. | 18 |
| abstract_inverted_index.potential | 10 |
| abstract_inverted_index.additional | 139 |
| abstract_inverted_index.comparable | 121 |
| abstract_inverted_index.discourage | 76 |
| abstract_inverted_index.generators | 137 |
| abstract_inverted_index.iterations | 98 |
| abstract_inverted_index.protection | 13 |
| abstract_inverted_index.Adversarial | 0 |
| abstract_inverted_index.classifiers | 135 |
| abstract_inverted_index.demonstrate | 93 |
| abstract_inverted_index.experiments | 92 |
| abstract_inverted_index.extensively | 5 |
| abstract_inverted_index.fine-tuning | 50, 100 |
| abstract_inverted_index.overfitting | 36 |
| abstract_inverted_index.challenging. | 29 |
| abstract_inverted_index.nontrivially | 107 |
| abstract_inverted_index.transferable | 24 |
| abstract_inverted_index.universally. | 109 |
| abstract_inverted_index.Specifically, | 56 |
| abstract_inverted_index.target-specific | 134 |
| abstract_inverted_index.transferability | 106, 125 |
| abstract_inverted_index.resource-intensive | 128 |
| abstract_inverted_index.github.com/zengh5/TA_feature_FT. | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |