Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.16909
Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts, encompassing multiple time-evolving facts, to address time-sensitive questions. This necessitates not only the parsing of temporal information within questions but also the identification and understanding of time-evolving facts to generate accurate answers. However, current large language models still have limited sensitivity to temporal information and their inadequate temporal reasoning capabilities. In this paper, we propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning. Experimental results on four TSQA datasets demonstrate that our framework significantly outperforms existing LLMs in TSQA tasks, marking a step forward in bridging the performance gap between machine and human temporal understanding and reasoning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.16909
- https://arxiv.org/pdf/2409.16909
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403808844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403808844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.16909Digital Object Identifier
- Title
-
Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question AnsweringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-25Full publication date if available
- Authors
-
Wanqi Yang, Yanda Li, Meng Fang, Ling ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.16909Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.16909Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.16909Direct OA link when available
- Concepts
-
Question answering, Sensitivity (control systems), Computer science, Natural language processing, Artificial intelligence, Engineering, Electronic engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403808844 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.16909 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.16909 |
| ids.openalex | https://openalex.org/W4403808844 |
| fwci | |
| type | preprint |
| title | Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12031 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech and dialogue systems |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9825999736785889 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11902 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9623000025749207 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44291984 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7090004086494446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[0].display_name | Question answering |
| concepts[1].id | https://openalex.org/C21200559 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6206824779510498 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[1].display_name | Sensitivity (control systems) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.44019076228141785 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33900612592697144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33650946617126465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.05779623985290527 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C24326235 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[6].display_name | Electronic engineering |
| keywords[0].id | https://openalex.org/keywords/question-answering |
| keywords[0].score | 0.7090004086494446 |
| keywords[0].display_name | Question answering |
| keywords[1].id | https://openalex.org/keywords/sensitivity |
| keywords[1].score | 0.6206824779510498 |
| keywords[1].display_name | Sensitivity (control systems) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.44019076228141785 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.33900612592697144 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.33650946617126465 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.05779623985290527 |
| keywords[5].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.16909 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.16909 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.16909 |
| locations[1].id | doi:10.48550/arxiv.2409.16909 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.16909 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066164174 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4642-2570 |
| authorships[0].author.display_name | Wanqi Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Wanqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033512723 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9439-202X |
| authorships[1].author.display_name | Yanda Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Yanda |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100400486 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6745-286X |
| authorships[2].author.display_name | Meng Fang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fang, Meng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089448955 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6490-3108 |
| authorships[3].author.display_name | Ling Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chen, Ling |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.16909 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-28T00:00:00 |
| display_name | Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12031 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech and dialogue systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2384605597, https://openalex.org/W2387743295, https://openalex.org/W3082787378, https://openalex.org/W2136007095, https://openalex.org/W2366230879, https://openalex.org/W3208425359, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.16909 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.16909 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.16909 |
| primary_location.id | pmh:oai:arXiv.org:2409.16909 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.16909 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.16909 |
| publication_date | 2024-09-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 67, 103 |
| abstract_inverted_index.In | 62 |
| abstract_inverted_index.in | 99, 106 |
| abstract_inverted_index.of | 8, 26, 37 |
| abstract_inverted_index.on | 87 |
| abstract_inverted_index.to | 16, 40, 53 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.and | 35, 56, 74, 80, 113, 117 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.gap | 110 |
| abstract_inverted_index.not | 22 |
| abstract_inverted_index.our | 93 |
| abstract_inverted_index.the | 5, 24, 33, 108 |
| abstract_inverted_index.LLMs | 98 |
| abstract_inverted_index.TSQA | 89, 100 |
| abstract_inverted_index.This | 20 |
| abstract_inverted_index.also | 32 |
| abstract_inverted_index.four | 88 |
| abstract_inverted_index.have | 50 |
| abstract_inverted_index.only | 23 |
| abstract_inverted_index.step | 104 |
| abstract_inverted_index.that | 70, 92 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.facts | 39 |
| abstract_inverted_index.human | 114 |
| abstract_inverted_index.large | 46 |
| abstract_inverted_index.novel | 68 |
| abstract_inverted_index.still | 49 |
| abstract_inverted_index.their | 57 |
| abstract_inverted_index.(TSQA) | 3 |
| abstract_inverted_index.facts, | 15 |
| abstract_inverted_index.models | 48 |
| abstract_inverted_index.paper, | 64 |
| abstract_inverted_index.tasks, | 101 |
| abstract_inverted_index.within | 29 |
| abstract_inverted_index.address | 17 |
| abstract_inverted_index.between | 111 |
| abstract_inverted_index.current | 45 |
| abstract_inverted_index.demands | 4 |
| abstract_inverted_index.forward | 105 |
| abstract_inverted_index.limited | 51 |
| abstract_inverted_index.machine | 112 |
| abstract_inverted_index.marking | 102 |
| abstract_inverted_index.parsing | 25 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.results | 86 |
| abstract_inverted_index.through | 76 |
| abstract_inverted_index.Granular | 81 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.Question | 1 |
| abstract_inverted_index.Temporal | 77 |
| abstract_inverted_index.accurate | 42 |
| abstract_inverted_index.answers. | 43 |
| abstract_inverted_index.bridging | 107 |
| abstract_inverted_index.datasets | 90 |
| abstract_inverted_index.enhances | 71 |
| abstract_inverted_index.existing | 97 |
| abstract_inverted_index.generate | 41 |
| abstract_inverted_index.language | 47 |
| abstract_inverted_index.multiple | 13 |
| abstract_inverted_index.specific | 9 |
| abstract_inverted_index.temporal | 10, 27, 54, 59, 72, 115 |
| abstract_inverted_index.Answering | 2 |
| abstract_inverted_index.Embedding | 79 |
| abstract_inverted_index.Learning. | 84 |
| abstract_inverted_index.awareness | 73 |
| abstract_inverted_index.contexts, | 11 |
| abstract_inverted_index.effective | 6 |
| abstract_inverted_index.framework | 69, 94 |
| abstract_inverted_index.questions | 30 |
| abstract_inverted_index.reasoning | 60, 75 |
| abstract_inverted_index.inadequate | 58 |
| abstract_inverted_index.questions. | 19 |
| abstract_inverted_index.reasoning. | 118 |
| abstract_inverted_index.Contrastive | 82 |
| abstract_inverted_index.demonstrate | 91 |
| abstract_inverted_index.information | 28, 55 |
| abstract_inverted_index.outperforms | 96 |
| abstract_inverted_index.performance | 109 |
| abstract_inverted_index.sensitivity | 52 |
| abstract_inverted_index.utilization | 7 |
| abstract_inverted_index.Experimental | 85 |
| abstract_inverted_index.encompassing | 12 |
| abstract_inverted_index.necessitates | 21 |
| abstract_inverted_index.Reinforcement | 83 |
| abstract_inverted_index.capabilities. | 61 |
| abstract_inverted_index.significantly | 95 |
| abstract_inverted_index.time-evolving | 14, 38 |
| abstract_inverted_index.understanding | 36, 116 |
| abstract_inverted_index.Time-Sensitive | 0 |
| abstract_inverted_index.identification | 34 |
| abstract_inverted_index.time-sensitive | 18 |
| abstract_inverted_index.Information-Aware | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |