Enhancing Urban GNSS Positioning Reliability via Conservative Satellite Selection Using Unanimous Voting Across Multiple Machine Learning Classifiers Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.12706
In urban environments, global navigation satellite system (GNSS) positioning is often compromised by signal blockages and multipath effects caused by buildings, leading to significant positioning errors. To address this issue, this study proposes a robust enhancement of zonotope shadow matching (ZSM)-based positioning by employing a conservative satellite selection strategy using unanimous voting across multiple machine learning classifiers. Three distinct models - random forest (RF), gradient boosting decision tree (GBDT), and support vector machine (SVM) - were trained to perform line-of-sight (LOS) and non-line-of-sight (NLOS) classification based on global positioning system (GPS) signal features. A satellite is selected for positioning only when all classifiers unanimously agree on its classification and their associated confidence scores exceed a threshold. Experiments with real-world GPS data collected in dense urban areas demonstrate that the proposed method significantly improves the positioning success rate and the receiver containment rate, even with imperfect LOS/NLOS classification. Although a slight increase in the position bound was observed due to the reduced number of satellites used, overall positioning reliability was substantially enhanced, indicating the effectiveness of the proposed approach in urban GNSS environments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.12706
- https://arxiv.org/pdf/2507.12706
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415309730
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415309730Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.12706Digital Object Identifier
- Title
-
Enhancing Urban GNSS Positioning Reliability via Conservative Satellite Selection Using Unanimous Voting Across Multiple Machine Learning ClassifiersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-17Full publication date if available
- Authors
-
Sang‐Hyun Kim, Jiwon SeoList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.12706Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.12706Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.12706Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415309730 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.12706 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.12706 |
| ids.openalex | https://openalex.org/W4415309730 |
| fwci | |
| type | preprint |
| title | Enhancing Urban GNSS Positioning Reliability via Conservative Satellite Selection Using Unanimous Voting Across Multiple Machine Learning Classifiers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10655 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9488000273704529 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | GNSS positioning and interference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.12706 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.12706 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.12706 |
| locations[1].id | doi:10.48550/arxiv.2507.12706 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.12706 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100326319 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4272-6059 |
| authorships[0].author.display_name | Sang‐Hyun Kim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kim, Sanghyun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100657256 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1781-533X |
| authorships[1].author.display_name | Jiwon Seo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Seo, Jiwon |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.12706 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Enhancing Urban GNSS Positioning Reliability via Conservative Satellite Selection Using Unanimous Voting Across Multiple Machine Learning Classifiers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10655 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9488000273704529 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | GNSS positioning and interference |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.12706 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.12706 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.12706 |
| primary_location.id | pmh:oai:arXiv.org:2507.12706 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.12706 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.12706 |
| publication_date | 2025-07-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 60, 74 |
| abstract_inverted_index.A | 93 |
| abstract_inverted_index.a | 33, 44, 114, 148 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 26 |
| abstract_inverted_index.by | 12, 19, 42 |
| abstract_inverted_index.in | 122, 151, 178 |
| abstract_inverted_index.is | 9, 95 |
| abstract_inverted_index.of | 36, 162, 174 |
| abstract_inverted_index.on | 86, 105 |
| abstract_inverted_index.to | 22, 77, 158 |
| abstract_inverted_index.GPS | 119 |
| abstract_inverted_index.all | 101 |
| abstract_inverted_index.and | 15, 69, 81, 108, 137 |
| abstract_inverted_index.due | 157 |
| abstract_inverted_index.for | 97 |
| abstract_inverted_index.its | 106 |
| abstract_inverted_index.the | 128, 133, 138, 152, 159, 172, 175 |
| abstract_inverted_index.was | 155, 168 |
| abstract_inverted_index.GNSS | 180 |
| abstract_inverted_index.data | 120 |
| abstract_inverted_index.even | 142 |
| abstract_inverted_index.only | 99 |
| abstract_inverted_index.rate | 136 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.this | 28, 30 |
| abstract_inverted_index.tree | 67 |
| abstract_inverted_index.were | 75 |
| abstract_inverted_index.when | 100 |
| abstract_inverted_index.with | 117, 143 |
| abstract_inverted_index.(GPS) | 90 |
| abstract_inverted_index.(LOS) | 80 |
| abstract_inverted_index.(RF), | 63 |
| abstract_inverted_index.(SVM) | 73 |
| abstract_inverted_index.Three | 57 |
| abstract_inverted_index.agree | 104 |
| abstract_inverted_index.areas | 125 |
| abstract_inverted_index.based | 85 |
| abstract_inverted_index.bound | 154 |
| abstract_inverted_index.dense | 123 |
| abstract_inverted_index.often | 10 |
| abstract_inverted_index.rate, | 141 |
| abstract_inverted_index.study | 31 |
| abstract_inverted_index.their | 109 |
| abstract_inverted_index.urban | 1, 124, 179 |
| abstract_inverted_index.used, | 164 |
| abstract_inverted_index.using | 49 |
| abstract_inverted_index.(GNSS) | 7 |
| abstract_inverted_index.(NLOS) | 83 |
| abstract_inverted_index.across | 52 |
| abstract_inverted_index.caused | 18 |
| abstract_inverted_index.exceed | 113 |
| abstract_inverted_index.forest | 62 |
| abstract_inverted_index.global | 3, 87 |
| abstract_inverted_index.issue, | 29 |
| abstract_inverted_index.method | 130 |
| abstract_inverted_index.models | 59 |
| abstract_inverted_index.number | 161 |
| abstract_inverted_index.random | 61 |
| abstract_inverted_index.robust | 34 |
| abstract_inverted_index.scores | 112 |
| abstract_inverted_index.shadow | 38 |
| abstract_inverted_index.signal | 13, 91 |
| abstract_inverted_index.slight | 149 |
| abstract_inverted_index.system | 6, 89 |
| abstract_inverted_index.vector | 71 |
| abstract_inverted_index.voting | 51 |
| abstract_inverted_index.(GBDT), | 68 |
| abstract_inverted_index.address | 27 |
| abstract_inverted_index.effects | 17 |
| abstract_inverted_index.errors. | 25 |
| abstract_inverted_index.leading | 21 |
| abstract_inverted_index.machine | 54, 72 |
| abstract_inverted_index.overall | 165 |
| abstract_inverted_index.perform | 78 |
| abstract_inverted_index.reduced | 160 |
| abstract_inverted_index.success | 135 |
| abstract_inverted_index.support | 70 |
| abstract_inverted_index.trained | 76 |
| abstract_inverted_index.Although | 147 |
| abstract_inverted_index.LOS/NLOS | 145 |
| abstract_inverted_index.approach | 177 |
| abstract_inverted_index.boosting | 65 |
| abstract_inverted_index.decision | 66 |
| abstract_inverted_index.distinct | 58 |
| abstract_inverted_index.gradient | 64 |
| abstract_inverted_index.improves | 132 |
| abstract_inverted_index.increase | 150 |
| abstract_inverted_index.learning | 55 |
| abstract_inverted_index.matching | 39 |
| abstract_inverted_index.multiple | 53 |
| abstract_inverted_index.observed | 156 |
| abstract_inverted_index.position | 153 |
| abstract_inverted_index.proposed | 129, 176 |
| abstract_inverted_index.proposes | 32 |
| abstract_inverted_index.receiver | 139 |
| abstract_inverted_index.selected | 96 |
| abstract_inverted_index.strategy | 48 |
| abstract_inverted_index.zonotope | 37 |
| abstract_inverted_index.blockages | 14 |
| abstract_inverted_index.collected | 121 |
| abstract_inverted_index.employing | 43 |
| abstract_inverted_index.enhanced, | 170 |
| abstract_inverted_index.features. | 92 |
| abstract_inverted_index.imperfect | 144 |
| abstract_inverted_index.multipath | 16 |
| abstract_inverted_index.satellite | 5, 46, 94 |
| abstract_inverted_index.selection | 47 |
| abstract_inverted_index.unanimous | 50 |
| abstract_inverted_index.associated | 110 |
| abstract_inverted_index.buildings, | 20 |
| abstract_inverted_index.confidence | 111 |
| abstract_inverted_index.indicating | 171 |
| abstract_inverted_index.navigation | 4 |
| abstract_inverted_index.real-world | 118 |
| abstract_inverted_index.satellites | 163 |
| abstract_inverted_index.threshold. | 115 |
| abstract_inverted_index.(ZSM)-based | 40 |
| abstract_inverted_index.Experiments | 116 |
| abstract_inverted_index.classifiers | 102 |
| abstract_inverted_index.compromised | 11 |
| abstract_inverted_index.containment | 140 |
| abstract_inverted_index.demonstrate | 126 |
| abstract_inverted_index.enhancement | 35 |
| abstract_inverted_index.positioning | 8, 24, 41, 88, 98, 134, 166 |
| abstract_inverted_index.reliability | 167 |
| abstract_inverted_index.significant | 23 |
| abstract_inverted_index.unanimously | 103 |
| abstract_inverted_index.classifiers. | 56 |
| abstract_inverted_index.conservative | 45 |
| abstract_inverted_index.effectiveness | 173 |
| abstract_inverted_index.environments, | 2 |
| abstract_inverted_index.environments. | 181 |
| abstract_inverted_index.line-of-sight | 79 |
| abstract_inverted_index.significantly | 131 |
| abstract_inverted_index.substantially | 169 |
| abstract_inverted_index.classification | 84, 107 |
| abstract_inverted_index.classification. | 146 |
| abstract_inverted_index.non-line-of-sight | 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |