EnRank: An Ensemble Method to Detect Pulmonary Hypertension Biomarkers Based on Feature Selection and Machine Learning Models Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3389/fgene.2021.636429
Pulmonary hypertension (PH) is a common disease that affects the normal functioning of the human pulmonary arteries. The peripheral blood mononuclear cells (PMBCs) served as an ideal source for a minimally invasive disease diagnosis. This study hypothesized that the transcriptional fluctuations in the PMBCs exposed to the PH arteries may stably reflect the disease. However, the dimension of a human transcriptome is much higher than the number of samples in all the existing datasets. So, an ensemble feature selection algorithm, EnRank, was proposed to integrate the ranking information of four popular feature selection algorithms, i.e., T-test (Ttest), Chi-squared test (Chi2), ridge regression (Ridge), and Least Absolute Shrinkage and Selection Operator (Lasso). Our results suggested that the EnRank-detected biomarkers provided useful information from these four feature selection algorithms and achieved very good prediction accuracy in predicting the PH patients. Many of the EnRank-detected biomarkers were also supported by the literature.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fgene.2021.636429
- OA Status
- gold
- Cited By
- 12
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3157984229
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3157984229Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fgene.2021.636429Digital Object Identifier
- Title
-
EnRank: An Ensemble Method to Detect Pulmonary Hypertension Biomarkers Based on Feature Selection and Machine Learning ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-27Full publication date if available
- Authors
-
Xiangju Liu, Yu Zhang, Chunli Fu, Ruochi Zhang, Fengfeng ZhouList of authors in order
- Landing page
-
https://doi.org/10.3389/fgene.2021.636429Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fgene.2021.636429Direct OA link when available
- Concepts
-
Feature selection, Lasso (programming language), Artificial intelligence, Feature (linguistics), Ranking (information retrieval), Computer science, Selection (genetic algorithm), Ensemble learning, Pulmonary hypertension, Pattern recognition (psychology), Transcriptome, Disease, Support vector machine, Machine learning, Computational biology, Medicine, Biology, Internal medicine, Gene expression, Gene, Biochemistry, Philosophy, World Wide Web, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 2, 2022: 3, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3157984229 |
|---|---|
| doi | https://doi.org/10.3389/fgene.2021.636429 |
| ids.doi | https://doi.org/10.3389/fgene.2021.636429 |
| ids.mag | 3157984229 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33986767 |
| ids.openalex | https://openalex.org/W3157984229 |
| fwci | 1.59185917 |
| type | article |
| title | EnRank: An Ensemble Method to Detect Pulmonary Hypertension Biomarkers Based on Feature Selection and Machine Learning Models |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 636429 |
| biblio.first_page | 636429 |
| topics[0].id | https://openalex.org/T10728 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Pulmonary Hypertension Research and Treatments |
| topics[1].id | https://openalex.org/T10515 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.979200005531311 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer-related molecular mechanisms research |
| topics[2].id | https://openalex.org/T10062 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9369000196456909 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | MicroRNA in disease regulation |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C148483581 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8660427331924438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[0].display_name | Feature selection |
| concepts[1].id | https://openalex.org/C37616216 |
| concepts[1].level | 2 |
| concepts[1].score | 0.689972460269928 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[1].display_name | Lasso (programming language) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5605975389480591 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5441452264785767 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C189430467 |
| concepts[4].level | 2 |
| concepts[4].score | 0.521250307559967 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[4].display_name | Ranking (information retrieval) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5051143765449524 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C81917197 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5038313269615173 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[6].display_name | Selection (genetic algorithm) |
| concepts[7].id | https://openalex.org/C45942800 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4902692139148712 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[7].display_name | Ensemble learning |
| concepts[8].id | https://openalex.org/C2780930700 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4788946211338043 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1128595 |
| concepts[8].display_name | Pulmonary hypertension |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.448344886302948 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C162317418 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4283093214035034 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[10].display_name | Transcriptome |
| concepts[11].id | https://openalex.org/C2779134260 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4208813011646271 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[11].display_name | Disease |
| concepts[12].id | https://openalex.org/C12267149 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41854047775268555 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[12].display_name | Support vector machine |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4169744551181793 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C70721500 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3581421375274658 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[14].display_name | Computational biology |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.3290436267852783 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.25614291429519653 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C126322002 |
| concepts[17].level | 1 |
| concepts[17].score | 0.23932433128356934 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[17].display_name | Internal medicine |
| concepts[18].id | https://openalex.org/C150194340 |
| concepts[18].level | 3 |
| concepts[18].score | 0.10808470845222473 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[18].display_name | Gene expression |
| concepts[19].id | https://openalex.org/C104317684 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0940818190574646 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[19].display_name | Gene |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C136764020 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[22].display_name | World Wide Web |
| concepts[23].id | https://openalex.org/C41895202 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[23].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/feature-selection |
| keywords[0].score | 0.8660427331924438 |
| keywords[0].display_name | Feature selection |
| keywords[1].id | https://openalex.org/keywords/lasso |
| keywords[1].score | 0.689972460269928 |
| keywords[1].display_name | Lasso (programming language) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5605975389480591 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5441452264785767 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/ranking |
| keywords[4].score | 0.521250307559967 |
| keywords[4].display_name | Ranking (information retrieval) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5051143765449524 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/selection |
| keywords[6].score | 0.5038313269615173 |
| keywords[6].display_name | Selection (genetic algorithm) |
| keywords[7].id | https://openalex.org/keywords/ensemble-learning |
| keywords[7].score | 0.4902692139148712 |
| keywords[7].display_name | Ensemble learning |
| keywords[8].id | https://openalex.org/keywords/pulmonary-hypertension |
| keywords[8].score | 0.4788946211338043 |
| keywords[8].display_name | Pulmonary hypertension |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.448344886302948 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/transcriptome |
| keywords[10].score | 0.4283093214035034 |
| keywords[10].display_name | Transcriptome |
| keywords[11].id | https://openalex.org/keywords/disease |
| keywords[11].score | 0.4208813011646271 |
| keywords[11].display_name | Disease |
| keywords[12].id | https://openalex.org/keywords/support-vector-machine |
| keywords[12].score | 0.41854047775268555 |
| keywords[12].display_name | Support vector machine |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.4169744551181793 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/computational-biology |
| keywords[14].score | 0.3581421375274658 |
| keywords[14].display_name | Computational biology |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.3290436267852783 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/biology |
| keywords[16].score | 0.25614291429519653 |
| keywords[16].display_name | Biology |
| keywords[17].id | https://openalex.org/keywords/internal-medicine |
| keywords[17].score | 0.23932433128356934 |
| keywords[17].display_name | Internal medicine |
| keywords[18].id | https://openalex.org/keywords/gene-expression |
| keywords[18].score | 0.10808470845222473 |
| keywords[18].display_name | Gene expression |
| keywords[19].id | https://openalex.org/keywords/gene |
| keywords[19].score | 0.0940818190574646 |
| keywords[19].display_name | Gene |
| language | en |
| locations[0].id | doi:10.3389/fgene.2021.636429 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2597340651 |
| locations[0].source.issn | 1664-8021 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-8021 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Genetics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Genetics |
| locations[0].landing_page_url | https://doi.org/10.3389/fgene.2021.636429 |
| locations[1].id | pmid:33986767 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in genetics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33986767 |
| locations[2].id | pmh:oai:doaj.org/article:90bc94090dc44b459190eca1530fb50e |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Genetics, Vol 12 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/90bc94090dc44b459190eca1530fb50e |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8110930 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Genet |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8110930 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5063506193 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4462-7879 |
| authorships[0].author.display_name | Xiangju Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[0].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiangju Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, China |
| authorships[1].author.id | https://openalex.org/A5100433763 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-6884-0490 |
| authorships[1].author.display_name | Yu Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[1].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, China |
| authorships[2].author.id | https://openalex.org/A5049709983 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4378-0863 |
| authorships[2].author.display_name | Chunli Fu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[2].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chunli Fu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Geriatric Medicine & Shandong Key Laboratory Cardiovascular Proteomics, Qilu Hospital of Shandong University, Jinan, China |
| authorships[3].author.id | https://openalex.org/A5002232089 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1103-5044 |
| authorships[3].author.display_name | Ruochi Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China |
| authorships[3].institutions[0].id | https://openalex.org/I194450716 |
| authorships[3].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jilin University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruochi Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China |
| authorships[4].author.id | https://openalex.org/A5058786170 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8108-6007 |
| authorships[4].author.display_name | Fengfeng Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China |
| authorships[4].institutions[0].id | https://openalex.org/I194450716 |
| authorships[4].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jilin University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fengfeng Zhou |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fgene.2021.636429 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EnRank: An Ensemble Method to Detect Pulmonary Hypertension Biomarkers Based on Feature Selection and Machine Learning Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10728 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Pulmonary Hypertension Research and Treatments |
| related_works | https://openalex.org/W4256576576, https://openalex.org/W3090384609, https://openalex.org/W3194013178, https://openalex.org/W4249086404, https://openalex.org/W4236464082, https://openalex.org/W2380784125, https://openalex.org/W2810025138, https://openalex.org/W1997711767, https://openalex.org/W4387885766, https://openalex.org/W2765894738 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fgene.2021.636429 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2597340651 |
| best_oa_location.source.issn | 1664-8021 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-8021 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Genetics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Genetics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fgene.2021.636429 |
| primary_location.id | doi:10.3389/fgene.2021.636429 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2597340651 |
| primary_location.source.issn | 1664-8021 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-8021 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Genetics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Genetics |
| primary_location.landing_page_url | https://doi.org/10.3389/fgene.2021.636429 |
| publication_date | 2021-04-27 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2019539159, https://openalex.org/W2341128841, https://openalex.org/W2940042705, https://openalex.org/W2908437265, https://openalex.org/W1967075220, https://openalex.org/W3094312164, https://openalex.org/W2766417776, https://openalex.org/W3010808949, https://openalex.org/W2306302840, https://openalex.org/W2968931106, https://openalex.org/W3027574585, https://openalex.org/W2293750515, https://openalex.org/W1980159298, https://openalex.org/W2968241373, https://openalex.org/W1993639599, https://openalex.org/W2901850087, https://openalex.org/W610863233, https://openalex.org/W2150782426, https://openalex.org/W2973465745, https://openalex.org/W2566076521, https://openalex.org/W2996391789, https://openalex.org/W3002976832, https://openalex.org/W3092232272, https://openalex.org/W2945593515, https://openalex.org/W1979548015, https://openalex.org/W3081354116, https://openalex.org/W2109553965, https://openalex.org/W2957609202, https://openalex.org/W1967705516, https://openalex.org/W2912411326, https://openalex.org/W2960327977, https://openalex.org/W3085859729, https://openalex.org/W2900343982, https://openalex.org/W2558586574, https://openalex.org/W2996749362, https://openalex.org/W2156343903, https://openalex.org/W3016642162, https://openalex.org/W2980177178, https://openalex.org/W3093420096, https://openalex.org/W2889038880, https://openalex.org/W2904180601, https://openalex.org/W3003897869, https://openalex.org/W2104846587, https://openalex.org/W2009159721, https://openalex.org/W2941053556, https://openalex.org/W2795979817, https://openalex.org/W2982145765, https://openalex.org/W3015043285, https://openalex.org/W3110553705, https://openalex.org/W3095200414, https://openalex.org/W3007148902, https://openalex.org/W3016122866, https://openalex.org/W2760827857, https://openalex.org/W3087081046, https://openalex.org/W2948126087, https://openalex.org/W2012307453 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 4, 29, 58 |
| abstract_inverted_index.PH | 47, 136 |
| abstract_inverted_index.an | 25, 75 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.in | 41, 69, 133 |
| abstract_inverted_index.is | 3, 61 |
| abstract_inverted_index.of | 12, 57, 67, 88, 139 |
| abstract_inverted_index.to | 45, 83 |
| abstract_inverted_index.Our | 111 |
| abstract_inverted_index.So, | 74 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.all | 70 |
| abstract_inverted_index.and | 103, 107, 127 |
| abstract_inverted_index.for | 28 |
| abstract_inverted_index.may | 49 |
| abstract_inverted_index.the | 9, 13, 38, 42, 46, 52, 55, 65, 71, 85, 115, 135, 140, 147 |
| abstract_inverted_index.was | 81 |
| abstract_inverted_index.(PH) | 2 |
| abstract_inverted_index.Many | 138 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.also | 144 |
| abstract_inverted_index.four | 89, 123 |
| abstract_inverted_index.from | 121 |
| abstract_inverted_index.good | 130 |
| abstract_inverted_index.much | 62 |
| abstract_inverted_index.test | 98 |
| abstract_inverted_index.than | 64 |
| abstract_inverted_index.that | 7, 37, 114 |
| abstract_inverted_index.very | 129 |
| abstract_inverted_index.were | 143 |
| abstract_inverted_index.Least | 104 |
| abstract_inverted_index.PMBCs | 43 |
| abstract_inverted_index.blood | 19 |
| abstract_inverted_index.cells | 21 |
| abstract_inverted_index.human | 14, 59 |
| abstract_inverted_index.i.e., | 94 |
| abstract_inverted_index.ideal | 26 |
| abstract_inverted_index.ridge | 100 |
| abstract_inverted_index.study | 35 |
| abstract_inverted_index.these | 122 |
| abstract_inverted_index.T-test | 95 |
| abstract_inverted_index.common | 5 |
| abstract_inverted_index.higher | 63 |
| abstract_inverted_index.normal | 10 |
| abstract_inverted_index.number | 66 |
| abstract_inverted_index.served | 23 |
| abstract_inverted_index.source | 27 |
| abstract_inverted_index.stably | 50 |
| abstract_inverted_index.useful | 119 |
| abstract_inverted_index.(Chi2), | 99 |
| abstract_inverted_index.(PMBCs) | 22 |
| abstract_inverted_index.EnRank, | 80 |
| abstract_inverted_index.affects | 8 |
| abstract_inverted_index.disease | 6, 32 |
| abstract_inverted_index.exposed | 44 |
| abstract_inverted_index.feature | 77, 91, 124 |
| abstract_inverted_index.popular | 90 |
| abstract_inverted_index.ranking | 86 |
| abstract_inverted_index.reflect | 51 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.samples | 68 |
| abstract_inverted_index.(Lasso). | 110 |
| abstract_inverted_index.(Ridge), | 102 |
| abstract_inverted_index.(Ttest), | 96 |
| abstract_inverted_index.Absolute | 105 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.Operator | 109 |
| abstract_inverted_index.accuracy | 132 |
| abstract_inverted_index.achieved | 128 |
| abstract_inverted_index.arteries | 48 |
| abstract_inverted_index.disease. | 53 |
| abstract_inverted_index.ensemble | 76 |
| abstract_inverted_index.existing | 72 |
| abstract_inverted_index.invasive | 31 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.provided | 118 |
| abstract_inverted_index.Pulmonary | 0 |
| abstract_inverted_index.Selection | 108 |
| abstract_inverted_index.Shrinkage | 106 |
| abstract_inverted_index.arteries. | 16 |
| abstract_inverted_index.datasets. | 73 |
| abstract_inverted_index.dimension | 56 |
| abstract_inverted_index.integrate | 84 |
| abstract_inverted_index.minimally | 30 |
| abstract_inverted_index.patients. | 137 |
| abstract_inverted_index.pulmonary | 15 |
| abstract_inverted_index.selection | 78, 92, 125 |
| abstract_inverted_index.suggested | 113 |
| abstract_inverted_index.supported | 145 |
| abstract_inverted_index.algorithm, | 79 |
| abstract_inverted_index.algorithms | 126 |
| abstract_inverted_index.biomarkers | 117, 142 |
| abstract_inverted_index.diagnosis. | 33 |
| abstract_inverted_index.peripheral | 18 |
| abstract_inverted_index.predicting | 134 |
| abstract_inverted_index.prediction | 131 |
| abstract_inverted_index.regression | 101 |
| abstract_inverted_index.Chi-squared | 97 |
| abstract_inverted_index.algorithms, | 93 |
| abstract_inverted_index.functioning | 11 |
| abstract_inverted_index.information | 87, 120 |
| abstract_inverted_index.literature. | 148 |
| abstract_inverted_index.mononuclear | 20 |
| abstract_inverted_index.fluctuations | 40 |
| abstract_inverted_index.hypertension | 1 |
| abstract_inverted_index.hypothesized | 36 |
| abstract_inverted_index.transcriptome | 60 |
| abstract_inverted_index.EnRank-detected | 116, 141 |
| abstract_inverted_index.transcriptional | 39 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5058786170 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I194450716 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.81420021 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |