Ensemble-Based Uncertainty Quantification for Reliable Large Language Model Classification in Social Data Applications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3585414
Assessing classification confidence is essential for effectively leveraging Large Language Models (LLMs) in automated data labeling, particularly within the sensitive contexts of Computational Social Science (CSS) tasks. In this study, we evaluate five uncertainty quantification (UQ) strategies across three CSS classification problems: stance detection, ideology identification, and frame detection. We benchmark these strategies using three different LLMs. To enhance human-in-the-loop classification performance, we introduce an ensemble-based UQ aggregation method, C_ensemble, and propose a novel evaluation metric, Misclassified Recall, designed to better assess model uncertainty on mislabeled or ambiguous data points. Our results show that C_ensemble outperforms existing UQ techniques in six out of nine model-dataset combinations, achieving an average AUC improvement of 8.7%. These findings highlight the potential of UQ-driven methods to significantly improve the reliability and efficiency of human-in-the-loop data annotation pipelines.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3585414
- OA Status
- gold
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411996505
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411996505Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3585414Digital Object Identifier
- Title
-
Ensemble-Based Uncertainty Quantification for Reliable Large Language Model Classification in Social Data ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
David F. Farr, Lynnette Hui Xian Ng, Iain J. Cruickshank, Nico Manzonelli, Nicholas A. Clark, Kate Starbird, Nathaniel D. Bastian, Jevin D. WestList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3585414Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3585414Direct OA link when available
- Concepts
-
Computer science, Ensemble learning, Artificial intelligence, Data mining, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411996505 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3585414 |
| ids.doi | https://doi.org/10.1109/access.2025.3585414 |
| ids.openalex | https://openalex.org/W4411996505 |
| fwci | 0.0 |
| type | article |
| title | Ensemble-Based Uncertainty Quantification for Reliable Large Language Model Classification in Social Data Applications |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 116429 |
| biblio.first_page | 116419 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9904999732971191 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9714000225067139 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Research |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9610000252723694 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6863312721252441 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C45942800 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4459807276725769 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[1].display_name | Ensemble learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.41455626487731934 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3723890781402588 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3515547513961792 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6863312721252441 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/ensemble-learning |
| keywords[1].score | 0.4459807276725769 |
| keywords[1].display_name | Ensemble learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.41455626487731934 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.3723890781402588 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3515547513961792 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3585414 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3585414 |
| locations[1].id | pmh:oai:doaj.org/article:13c7bfc435c1456b814527070ac0ab7d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 116419-116429 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/13c7bfc435c1456b814527070ac0ab7d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042098061 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | David F. Farr |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[0].affiliations[0].raw_affiliation_string | Information School, University of Washington, Seattle, WA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I201448701 |
| authorships[0].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Washington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David T. Farr |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Information School, University of Washington, Seattle, WA, USA |
| authorships[1].author.id | https://openalex.org/A5001523273 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2740-7818 |
| authorships[1].author.display_name | Lynnette Hui Xian Ng |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I74973139 |
| authorships[1].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Carnegie Mellon University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lynnette Hui Xian Ng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA |
| authorships[2].author.id | https://openalex.org/A5014652241 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4205-5806 |
| authorships[2].author.display_name | Iain J. Cruickshank |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I74973139 |
| authorships[2].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Carnegie Mellon University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Iain J. Cruickshank |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA |
| authorships[3].author.id | https://openalex.org/A5114337839 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Nico Manzonelli |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I192545095 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, United States Military Academy at West Point, West Point, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I192545095 |
| authorships[3].institutions[0].ror | https://ror.org/01jepya76 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1304082316, https://openalex.org/I1330347796, https://openalex.org/I192545095, https://openalex.org/I4210088792 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | United States Military Academy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nico Manzonelli |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, United States Military Academy at West Point, West Point, NY, USA |
| authorships[4].author.id | https://openalex.org/A5034948347 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0105-9605 |
| authorships[4].author.display_name | Nicholas A. Clark |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[4].affiliations[0].raw_affiliation_string | Information School, University of Washington, Seattle, WA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I201448701 |
| authorships[4].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Washington |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nicholas Clark |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Information School, University of Washington, Seattle, WA, USA |
| authorships[5].author.id | https://openalex.org/A5045494255 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1661-4608 |
| authorships[5].author.display_name | Kate Starbird |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[5].affiliations[0].raw_affiliation_string | Human Centered Design and Engineering, University of Washington, Seattle, WA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I201448701 |
| authorships[5].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Washington |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kate Starbird |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Human Centered Design and Engineering, University of Washington, Seattle, WA, USA |
| authorships[6].author.id | https://openalex.org/A5032194186 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9957-2778 |
| authorships[6].author.display_name | Nathaniel D. Bastian |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I192545095 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, United States Military Academy at West Point, West Point, NY, USA |
| authorships[6].institutions[0].id | https://openalex.org/I192545095 |
| authorships[6].institutions[0].ror | https://ror.org/01jepya76 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1304082316, https://openalex.org/I1330347796, https://openalex.org/I192545095, https://openalex.org/I4210088792 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | United States Military Academy |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Nathaniel D. Bastian |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, United States Military Academy at West Point, West Point, NY, USA |
| authorships[7].author.id | https://openalex.org/A5046879461 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4118-0322 |
| authorships[7].author.display_name | Jevin D. West |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[7].affiliations[0].raw_affiliation_string | Information School, University of Washington, Seattle, WA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I201448701 |
| authorships[7].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Washington |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jevin West |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Information School, University of Washington, Seattle, WA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3585414 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-07-04T00:00:00 |
| display_name | Ensemble-Based Uncertainty Quantification for Reliable Large Language Model Classification in Social Data Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9904999732971191 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3585414 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3585414 |
| primary_location.id | doi:10.1109/access.2025.3585414 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3585414 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4396809921, https://openalex.org/W4384200891, https://openalex.org/W4410376226, https://openalex.org/W6862111818, https://openalex.org/W4389636360, https://openalex.org/W4392240262, https://openalex.org/W4402827393, https://openalex.org/W4389518686, https://openalex.org/W4394780772, https://openalex.org/W4408812939, https://openalex.org/W4396218239, https://openalex.org/W6778883912, https://openalex.org/W6839548382, https://openalex.org/W3099474967, https://openalex.org/W6801617135, https://openalex.org/W4396831993, https://openalex.org/W3047027807, https://openalex.org/W4404782982, https://openalex.org/W6851151028, https://openalex.org/W6875092577, https://openalex.org/W6853906918, https://openalex.org/W6874851699, https://openalex.org/W4401043565, https://openalex.org/W6850423384, https://openalex.org/W6730042731, https://openalex.org/W6857598455, https://openalex.org/W4294597242, https://openalex.org/W4401630357, https://openalex.org/W4285301760, https://openalex.org/W6753084064, https://openalex.org/W2460159515, https://openalex.org/W2161920755, https://openalex.org/W2741212913, https://openalex.org/W2566963797, https://openalex.org/W560287614, https://openalex.org/W2130237711, https://openalex.org/W2001442493, https://openalex.org/W6874219447, https://openalex.org/W4400055904, https://openalex.org/W4400004771, https://openalex.org/W2986889260, https://openalex.org/W4404782678, https://openalex.org/W4380301730, https://openalex.org/W3214119601, https://openalex.org/W2884295076, https://openalex.org/W4295872590, https://openalex.org/W4395484085 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 72 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.UQ | 66, 97 |
| abstract_inverted_index.We | 49 |
| abstract_inverted_index.an | 64, 107 |
| abstract_inverted_index.in | 12, 99 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 21, 102, 111, 118, 128 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.or | 86 |
| abstract_inverted_index.to | 79, 121 |
| abstract_inverted_index.we | 30, 62 |
| abstract_inverted_index.AUC | 109 |
| abstract_inverted_index.CSS | 39 |
| abstract_inverted_index.Our | 90 |
| abstract_inverted_index.and | 46, 70, 126 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.out | 101 |
| abstract_inverted_index.six | 100 |
| abstract_inverted_index.the | 18, 116, 124 |
| abstract_inverted_index.(UQ) | 35 |
| abstract_inverted_index.data | 14, 88, 130 |
| abstract_inverted_index.five | 32 |
| abstract_inverted_index.nine | 103 |
| abstract_inverted_index.show | 92 |
| abstract_inverted_index.that | 93 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.(CSS) | 25 |
| abstract_inverted_index.8.7%. | 112 |
| abstract_inverted_index.LLMs. | 56 |
| abstract_inverted_index.Large | 8 |
| abstract_inverted_index.These | 113 |
| abstract_inverted_index.frame | 47 |
| abstract_inverted_index.model | 82 |
| abstract_inverted_index.novel | 73 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.three | 38, 54 |
| abstract_inverted_index.using | 53 |
| abstract_inverted_index.(LLMs) | 11 |
| abstract_inverted_index.Models | 10 |
| abstract_inverted_index.Social | 23 |
| abstract_inverted_index.across | 37 |
| abstract_inverted_index.assess | 81 |
| abstract_inverted_index.better | 80 |
| abstract_inverted_index.stance | 42 |
| abstract_inverted_index.study, | 29 |
| abstract_inverted_index.tasks. | 26 |
| abstract_inverted_index.within | 17 |
| abstract_inverted_index.Recall, | 77 |
| abstract_inverted_index.Science | 24 |
| abstract_inverted_index.average | 108 |
| abstract_inverted_index.enhance | 58 |
| abstract_inverted_index.improve | 123 |
| abstract_inverted_index.method, | 68 |
| abstract_inverted_index.methods | 120 |
| abstract_inverted_index.metric, | 75 |
| abstract_inverted_index.points. | 89 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.Language | 9 |
| abstract_inverted_index.contexts | 20 |
| abstract_inverted_index.designed | 78 |
| abstract_inverted_index.evaluate | 31 |
| abstract_inverted_index.existing | 96 |
| abstract_inverted_index.findings | 114 |
| abstract_inverted_index.ideology | 44 |
| abstract_inverted_index.Assessing | 0 |
| abstract_inverted_index.UQ-driven | 119 |
| abstract_inverted_index.achieving | 106 |
| abstract_inverted_index.ambiguous | 87 |
| abstract_inverted_index.automated | 13 |
| abstract_inverted_index.benchmark | 50 |
| abstract_inverted_index.different | 55 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.highlight | 115 |
| abstract_inverted_index.introduce | 63 |
| abstract_inverted_index.labeling, | 15 |
| abstract_inverted_index.potential | 117 |
| abstract_inverted_index.problems: | 41 |
| abstract_inverted_index.sensitive | 19 |
| abstract_inverted_index.C_ensemble | 94 |
| abstract_inverted_index.annotation | 131 |
| abstract_inverted_index.confidence | 2 |
| abstract_inverted_index.detection, | 43 |
| abstract_inverted_index.detection. | 48 |
| abstract_inverted_index.efficiency | 127 |
| abstract_inverted_index.evaluation | 74 |
| abstract_inverted_index.leveraging | 7 |
| abstract_inverted_index.mislabeled | 85 |
| abstract_inverted_index.pipelines. | 132 |
| abstract_inverted_index.strategies | 36, 52 |
| abstract_inverted_index.techniques | 98 |
| abstract_inverted_index.C_ensemble, | 69 |
| abstract_inverted_index.aggregation | 67 |
| abstract_inverted_index.effectively | 6 |
| abstract_inverted_index.improvement | 110 |
| abstract_inverted_index.outperforms | 95 |
| abstract_inverted_index.reliability | 125 |
| abstract_inverted_index.uncertainty | 33, 83 |
| abstract_inverted_index.particularly | 16 |
| abstract_inverted_index.performance, | 61 |
| abstract_inverted_index.Computational | 22 |
| abstract_inverted_index.Misclassified | 76 |
| abstract_inverted_index.combinations, | 105 |
| abstract_inverted_index.model-dataset | 104 |
| abstract_inverted_index.significantly | 122 |
| abstract_inverted_index.classification | 1, 40, 60 |
| abstract_inverted_index.ensemble-based | 65 |
| abstract_inverted_index.quantification | 34 |
| abstract_inverted_index.identification, | 45 |
| abstract_inverted_index.human-in-the-loop | 59, 129 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.11681659 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |