Ensemble of Feature:based and Deep learning:based Classifiers for Detection of Abnormal Heart Sounds Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.22489/cinc.2016.182-399
The goal of the 2016 PhysioNet/CinC Challenge is the development of an algorithm to classify normal/abnormal heart sounds.A total of 124 time-frequency features were extracted from the phonocardiogram (PCG) and input to a variant of the AdaBoost classifier.A second classifier using convolutional neural network (CNN) was trained using PCGs cardiac cycles decomposed into four frequency bands.The final decision rule to classify normal/abnormal heart sounds was based on an ensemble of classifiers combining the outputs of AdaBoost and the CNN.The algorithm was trained on a training dataset (normal= 2575, abnormal= 665) and evaluated on a blind test dataset.Our classifier ensemble approach obtained the highest score of the competition with a sensitivity, specificity, and overall score of 0.9424, 0.7781, and 0.8602, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.22489/cinc.2016.182-399
- https://doi.org/10.22489/cinc.2016.182-399
- OA Status
- hybrid
- Cited By
- 305
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2593628220
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2593628220Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22489/cinc.2016.182-399Digital Object Identifier
- Title
-
Ensemble of Feature:based and Deep learning:based Classifiers for Detection of Abnormal Heart SoundsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-09-14Full publication date if available
- Authors
-
Cristhian Potes, Saman Parvaneh, Asif Rahman, Bryan ConroyList of authors in order
- Landing page
-
https://doi.org/10.22489/cinc.2016.182-399Publisher landing page
- PDF URL
-
https://doi.org/10.22489/cinc.2016.182-399Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.22489/cinc.2016.182-399Direct OA link when available
- Concepts
-
Computer science, Ensemble learning, Artificial intelligence, Feature (linguistics), Pattern recognition (psychology), Feature extraction, Speech recognition, Machine learning, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
305Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 21, 2024: 32, 2023: 37, 2022: 35, 2021: 57Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2593628220 |
|---|---|
| doi | https://doi.org/10.22489/cinc.2016.182-399 |
| ids.doi | https://doi.org/10.22489/cinc.2016.182-399 |
| ids.mag | 2593628220 |
| ids.openalex | https://openalex.org/W2593628220 |
| fwci | 17.12577753 |
| type | article |
| title | Ensemble of Feature:based and Deep learning:based Classifiers for Detection of Abnormal Heart Sounds |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12419 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Phonocardiography and Auscultation Techniques |
| topics[1].id | https://openalex.org/T12790 |
| topics[1].field.id | https://openalex.org/fields/29 |
| topics[1].field.display_name | Nursing |
| topics[1].score | 0.9337000250816345 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2910 |
| topics[1].subfield.display_name | Issues, ethics and legal aspects |
| topics[1].display_name | Nursing Diagnosis and Documentation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7290081977844238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C45942800 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6828986406326294 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[1].display_name | Ensemble learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6385207772254944 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.55027836561203 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46754732728004456 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46659210324287415 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43784299492836 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33191609382629395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C41895202 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[8].display_name | Linguistics |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7290081977844238 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/ensemble-learning |
| keywords[1].score | 0.6828986406326294 |
| keywords[1].display_name | Ensemble learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6385207772254944 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.55027836561203 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.46754732728004456 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.46659210324287415 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.43784299492836 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.33191609382629395 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.22489/cinc.2016.182-399 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220650825 |
| locations[0].source.issn | 2325-8861, 2325-887X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2325-8861 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computing in cardiology |
| locations[0].source.host_organization | https://openalex.org/P4310320439 |
| locations[0].source.host_organization_name | IEEE Computer Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://doi.org/10.22489/cinc.2016.182-399 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2016 Computing in Cardiology Conference (CinC) |
| locations[0].landing_page_url | https://doi.org/10.22489/cinc.2016.182-399 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089347879 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Cristhian Potes |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[0].affiliations[0].raw_affiliation_string | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[0].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Philips (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cristhian Potes |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[1].author.id | https://openalex.org/A5011253727 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Saman Parvaneh |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[1].affiliations[0].raw_affiliation_string | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[1].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Philips (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saman Parvaneh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[2].author.id | https://openalex.org/A5005860166 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1375-4330 |
| authorships[2].author.display_name | Asif Rahman |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[2].affiliations[0].raw_affiliation_string | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[2].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Philips (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Asif Rahman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[3].author.id | https://openalex.org/A5113532360 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Bryan Conroy |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131230 |
| authorships[3].affiliations[0].raw_affiliation_string | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210131230 |
| authorships[3].institutions[0].ror | https://ror.org/03kw6wr76 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210122849, https://openalex.org/I4210131230 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Philips (United States) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bryan Conroy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Philips Research North America, Acute Care Solutions, Cambridge, MA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.22489/cinc.2016.182-399 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ensemble of Feature:based and Deep learning:based Classifiers for Detection of Abnormal Heart Sounds |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12419 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Phonocardiography and Auscultation Techniques |
| related_works | https://openalex.org/W4376643315, https://openalex.org/W4324137541, https://openalex.org/W2900445707, https://openalex.org/W4285741730, https://openalex.org/W1191482210, https://openalex.org/W4285046548, https://openalex.org/W4210302090, https://openalex.org/W2806625726, https://openalex.org/W3092276832, https://openalex.org/W4375951447 |
| cited_by_count | 305 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 21 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 32 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 37 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 35 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 57 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 55 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 33 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 20 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 14 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22489/cinc.2016.182-399 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220650825 |
| best_oa_location.source.issn | 2325-8861, 2325-887X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2325-8861 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computing in cardiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320439 |
| best_oa_location.source.host_organization_name | IEEE Computer Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://doi.org/10.22489/cinc.2016.182-399 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 2016 Computing in Cardiology Conference (CinC) |
| best_oa_location.landing_page_url | https://doi.org/10.22489/cinc.2016.182-399 |
| primary_location.id | doi:10.22489/cinc.2016.182-399 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220650825 |
| primary_location.source.issn | 2325-8861, 2325-887X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2325-8861 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computing in cardiology |
| primary_location.source.host_organization | https://openalex.org/P4310320439 |
| primary_location.source.host_organization_name | IEEE Computer Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://doi.org/10.22489/cinc.2016.182-399 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2016 Computing in Cardiology Conference (CinC) |
| primary_location.landing_page_url | https://doi.org/10.22489/cinc.2016.182-399 |
| publication_date | 2016-09-14 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2557139718, https://openalex.org/W2020459286, https://openalex.org/W2301158262, https://openalex.org/W2192009965, https://openalex.org/W4236531333, https://openalex.org/W2131444712 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 32, 83, 93, 108 |
| abstract_inverted_index.an | 11, 67 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 2, 10, 19, 34, 69, 74, 104, 114 |
| abstract_inverted_index.on | 66, 82, 92 |
| abstract_inverted_index.to | 13, 31, 59 |
| abstract_inverted_index.124 | 20 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 29, 76, 90, 111, 117 |
| abstract_inverted_index.the | 3, 8, 26, 35, 72, 77, 101, 105 |
| abstract_inverted_index.was | 45, 64, 80 |
| abstract_inverted_index.2016 | 4 |
| abstract_inverted_index.665) | 89 |
| abstract_inverted_index.PCGs | 48 |
| abstract_inverted_index.four | 53 |
| abstract_inverted_index.from | 25 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.into | 52 |
| abstract_inverted_index.rule | 58 |
| abstract_inverted_index.test | 95 |
| abstract_inverted_index.were | 23 |
| abstract_inverted_index.with | 107 |
| abstract_inverted_index.(CNN) | 44 |
| abstract_inverted_index.(PCG) | 28 |
| abstract_inverted_index.2575, | 87 |
| abstract_inverted_index.based | 65 |
| abstract_inverted_index.blind | 94 |
| abstract_inverted_index.final | 56 |
| abstract_inverted_index.heart | 16, 62 |
| abstract_inverted_index.input | 30 |
| abstract_inverted_index.score | 103, 113 |
| abstract_inverted_index.total | 18 |
| abstract_inverted_index.using | 40, 47 |
| abstract_inverted_index.cycles | 50 |
| abstract_inverted_index.neural | 42 |
| abstract_inverted_index.second | 38 |
| abstract_inverted_index.sounds | 63 |
| abstract_inverted_index.0.7781, | 116 |
| abstract_inverted_index.0.8602, | 118 |
| abstract_inverted_index.0.9424, | 115 |
| abstract_inverted_index.CNN.The | 78 |
| abstract_inverted_index.cardiac | 49 |
| abstract_inverted_index.dataset | 85 |
| abstract_inverted_index.highest | 102 |
| abstract_inverted_index.network | 43 |
| abstract_inverted_index.outputs | 73 |
| abstract_inverted_index.overall | 112 |
| abstract_inverted_index.trained | 46, 81 |
| abstract_inverted_index.variant | 33 |
| abstract_inverted_index.(normal= | 86 |
| abstract_inverted_index.AdaBoost | 36, 75 |
| abstract_inverted_index.approach | 99 |
| abstract_inverted_index.classify | 14, 60 |
| abstract_inverted_index.decision | 57 |
| abstract_inverted_index.ensemble | 68, 98 |
| abstract_inverted_index.features | 22 |
| abstract_inverted_index.obtained | 100 |
| abstract_inverted_index.sounds.A | 17 |
| abstract_inverted_index.training | 84 |
| abstract_inverted_index.Challenge | 6 |
| abstract_inverted_index.abnormal= | 88 |
| abstract_inverted_index.algorithm | 12, 79 |
| abstract_inverted_index.bands.The | 55 |
| abstract_inverted_index.combining | 71 |
| abstract_inverted_index.evaluated | 91 |
| abstract_inverted_index.extracted | 24 |
| abstract_inverted_index.frequency | 54 |
| abstract_inverted_index.classifier | 39, 97 |
| abstract_inverted_index.decomposed | 51 |
| abstract_inverted_index.classifiers | 70 |
| abstract_inverted_index.competition | 106 |
| abstract_inverted_index.dataset.Our | 96 |
| abstract_inverted_index.development | 9 |
| abstract_inverted_index.classifier.A | 37 |
| abstract_inverted_index.sensitivity, | 109 |
| abstract_inverted_index.specificity, | 110 |
| abstract_inverted_index.convolutional | 41 |
| abstract_inverted_index.respectively. | 119 |
| abstract_inverted_index.PhysioNet/CinC | 5 |
| abstract_inverted_index.time-frequency | 21 |
| abstract_inverted_index.normal/abnormal | 15, 61 |
| abstract_inverted_index.phonocardiogram | 27 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.99426431 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |