Ensemble of top3 prediction with image pixel interval method using deep learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.2298/csis230223056a
Computer vision (CV) has been successfully used in picture categorization applications in various fields, including medicine, production quality control, and transportation systems. CV models use an excessive number of photos to train potential models. Considering that image acquisition is typically expensive and time-consuming, in this study, we provide a multistep strategy to improve image categorization accuracy with less data. In the first stage, we constructed numerous datasets from a single dataset. Given that an image has pixels with values ranging from 0 to 255, the images were separated into pixel intervals based on the type of dataset. The pixel interval was split into two portions when the dataset was grayscale and five portions when it was composed of RGB images. Next, we trained the model using both the original and newly constructed datasets. Each image in the training process showed a non-identical prediction space, and we suggested using the topthree prediction probability ensemble technique. The top three predictions for the newly created images were combined with the corresponding probability for the original image. The results showed that learning patterns from each interval of pixels and ensembling the top three predictions significantly improve the performance and accuracy, and this strategy can be used with any model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2298/csis230223056a
- http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056A
- OA Status
- diamond
- Cited By
- 2
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385832651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385832651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2298/csis230223056aDigital Object Identifier
- Title
-
Ensemble of top3 prediction with image pixel interval method using deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Abdulaziz Anorboev, Javokhir Musaev, Sarvinoz Anorboeva, Jeongkyu Hong, Yeong‐Seok Seo, Thanh Nguyen, Dosam HwangList of authors in order
- Landing page
-
https://doi.org/10.2298/csis230223056aPublisher landing page
- PDF URL
-
https://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056ADirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056ADirect OA link when available
- Concepts
-
Computer science, Pixel, Artificial intelligence, Grayscale, Ensemble learning, Pattern recognition (psychology), Interval (graph theory), Categorization, Image (mathematics), RGB color model, Process (computing), Computer vision, Mathematics, Combinatorics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385832651 |
|---|---|
| doi | https://doi.org/10.2298/csis230223056a |
| ids.doi | https://doi.org/10.2298/csis230223056a |
| ids.openalex | https://openalex.org/W4385832651 |
| fwci | 0.36393668 |
| type | article |
| title | Ensemble of top3 prediction with image pixel interval method using deep learning |
| biblio.issue | 4 |
| biblio.volume | 20 |
| biblio.last_page | 1517 |
| biblio.first_page | 1503 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8409759998321533 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C160633673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8202906847000122 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[1].display_name | Pixel |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.796687126159668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C78201319 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5950748324394226 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q685727 |
| concepts[3].display_name | Grayscale |
| concepts[4].id | https://openalex.org/C45942800 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5464630126953125 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[4].display_name | Ensemble learning |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.541170597076416 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C2778067643 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5272965431213379 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[6].display_name | Interval (graph theory) |
| concepts[7].id | https://openalex.org/C94124525 |
| concepts[7].level | 2 |
| concepts[7].score | 0.518256664276123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[7].display_name | Categorization |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.503572404384613 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C82990744 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48076555132865906 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[9].display_name | RGB color model |
| concepts[10].id | https://openalex.org/C98045186 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4250679314136505 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[10].display_name | Process (computing) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4208362102508545 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11219820380210876 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C114614502 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[13].display_name | Combinatorics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8409759998321533 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pixel |
| keywords[1].score | 0.8202906847000122 |
| keywords[1].display_name | Pixel |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.796687126159668 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/grayscale |
| keywords[3].score | 0.5950748324394226 |
| keywords[3].display_name | Grayscale |
| keywords[4].id | https://openalex.org/keywords/ensemble-learning |
| keywords[4].score | 0.5464630126953125 |
| keywords[4].display_name | Ensemble learning |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.541170597076416 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/interval |
| keywords[6].score | 0.5272965431213379 |
| keywords[6].display_name | Interval (graph theory) |
| keywords[7].id | https://openalex.org/keywords/categorization |
| keywords[7].score | 0.518256664276123 |
| keywords[7].display_name | Categorization |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.503572404384613 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/rgb-color-model |
| keywords[9].score | 0.48076555132865906 |
| keywords[9].display_name | RGB color model |
| keywords[10].id | https://openalex.org/keywords/process |
| keywords[10].score | 0.4250679314136505 |
| keywords[10].display_name | Process (computing) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.4208362102508545 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.11219820380210876 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.2298/csis230223056a |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S206939107 |
| locations[0].source.issn | 1820-0214, 2406-1018 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1820-0214 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Computer Science and Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310321031 |
| locations[0].source.host_organization_name | ComSIS Consortium |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321031 |
| locations[0].source.host_organization_lineage_names | ComSIS Consortium |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056A |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer Science and Information Systems |
| locations[0].landing_page_url | https://doi.org/10.2298/csis230223056a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084255344 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1416-7138 |
| authorships[0].author.display_name | Abdulaziz Anorboev |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[0].institutions[0].id | https://openalex.org/I55240360 |
| authorships[0].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Yeungnam University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdulaziz Anorboev |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[1].author.id | https://openalex.org/A5091106383 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4656-0479 |
| authorships[1].author.display_name | Javokhir Musaev |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[1].institutions[0].id | https://openalex.org/I55240360 |
| authorships[1].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Yeungnam University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Javokhir Musaev |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[2].author.id | https://openalex.org/A5092640563 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-5038-7038 |
| authorships[2].author.display_name | Sarvinoz Anorboeva |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[2].institutions[0].id | https://openalex.org/I55240360 |
| authorships[2].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Yeungnam University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sarvinoz Anorboeva |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[3].author.id | https://openalex.org/A5019410243 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4541-2255 |
| authorships[3].author.display_name | Jeongkyu Hong |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[3].institutions[0].id | https://openalex.org/I55240360 |
| authorships[3].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Yeungnam University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jeongkyu Hong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[4].author.id | https://openalex.org/A5012219094 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5319-7674 |
| authorships[4].author.display_name | Yeong‐Seok Seo |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[4].institutions[0].id | https://openalex.org/I55240360 |
| authorships[4].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Yeungnam University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yeong-Seok Seo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[5].author.id | https://openalex.org/A5101574851 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0483-0728 |
| authorships[5].author.display_name | Thanh Nguyen |
| authorships[5].countries | PL, VN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I11923345, https://openalex.org/I3020192730, https://openalex.org/I686019 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland + Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I11923345, https://openalex.org/I686019 |
| authorships[5].affiliations[1].raw_affiliation_string | Faculty of Information and Communication Technology, Wroclaw University of Science and Technology 50-370 Wroclaw, Poland |
| authorships[5].institutions[0].id | https://openalex.org/I686019 |
| authorships[5].institutions[0].ror | https://ror.org/00bas1c41 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I686019 |
| authorships[5].institutions[0].country_code | PL |
| authorships[5].institutions[0].display_name | AGH University of Krakow |
| authorships[5].institutions[1].id | https://openalex.org/I11923345 |
| authorships[5].institutions[1].ror | https://ror.org/008fyn775 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I11923345 |
| authorships[5].institutions[1].country_code | PL |
| authorships[5].institutions[1].display_name | Wrocław University of Science and Technology |
| authorships[5].institutions[2].id | https://openalex.org/I3020192730 |
| authorships[5].institutions[2].ror | https://ror.org/04r9s1v23 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I3020192730 |
| authorships[5].institutions[2].country_code | VN |
| authorships[5].institutions[2].display_name | Trường ĐH Nguyễn Tất Thành |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Thanh Nguyen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Information and Communication Technology, Wroclaw University of Science and Technology 50-370 Wroclaw, Poland, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland + Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam |
| authorships[6].author.id | https://openalex.org/A5032265881 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7851-7323 |
| authorships[6].author.display_name | Dosam Hwang |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I55240360 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| authorships[6].institutions[0].id | https://openalex.org/I55240360 |
| authorships[6].institutions[0].ror | https://ror.org/05yc6p159 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I55240360 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Yeungnam University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Dosam Hwang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Engineering, Yeungnam University 38541 Gyeongsan, South Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056A |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ensemble of top3 prediction with image pixel interval method using deep learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W2165912799, https://openalex.org/W2735662278, https://openalex.org/W2382615723, https://openalex.org/W4311804456, https://openalex.org/W1987484445, https://openalex.org/W2623658258, https://openalex.org/W2143413548, https://openalex.org/W2899689856, https://openalex.org/W3153082147, https://openalex.org/W2968833425 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2298/csis230223056a |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S206939107 |
| best_oa_location.source.issn | 1820-0214, 2406-1018 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1820-0214 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Computer Science and Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310321031 |
| best_oa_location.source.host_organization_name | ComSIS Consortium |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321031 |
| best_oa_location.source.host_organization_lineage_names | ComSIS Consortium |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056A |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer Science and Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.2298/csis230223056a |
| primary_location.id | doi:10.2298/csis230223056a |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S206939107 |
| primary_location.source.issn | 1820-0214, 2406-1018 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1820-0214 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Computer Science and Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310321031 |
| primary_location.source.host_organization_name | ComSIS Consortium |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321031 |
| primary_location.source.host_organization_lineage_names | ComSIS Consortium |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300056A |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer Science and Information Systems |
| primary_location.landing_page_url | https://doi.org/10.2298/csis230223056a |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2002767255, https://openalex.org/W4241005218, https://openalex.org/W4234789958, https://openalex.org/W2605018929, https://openalex.org/W2128073546, https://openalex.org/W2789758093, https://openalex.org/W2970602317, https://openalex.org/W2135850590, https://openalex.org/W4242199660, https://openalex.org/W2602516395, https://openalex.org/W2980444207, https://openalex.org/W1550585437, https://openalex.org/W2787468747, https://openalex.org/W2622999711, https://openalex.org/W2262682506, https://openalex.org/W3096746833, https://openalex.org/W1968023063, https://openalex.org/W2755012395, https://openalex.org/W3095676075, https://openalex.org/W2897113013, https://openalex.org/W4221139956, https://openalex.org/W3011171922, https://openalex.org/W3157506437, https://openalex.org/W4297904465, https://openalex.org/W2768275492, https://openalex.org/W2945989246, https://openalex.org/W2531409750, https://openalex.org/W2517968414, https://openalex.org/W4308237781, https://openalex.org/W3169090118, https://openalex.org/W4210530275, https://openalex.org/W4297094638, https://openalex.org/W14929449, https://openalex.org/W2031243162 |
| referenced_works_count | 34 |
| abstract_inverted_index.0 | 81 |
| abstract_inverted_index.a | 48, 68, 140 |
| abstract_inverted_index.CV | 22 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.an | 25, 73 |
| abstract_inverted_index.be | 200 |
| abstract_inverted_index.in | 7, 11, 43, 135 |
| abstract_inverted_index.is | 38 |
| abstract_inverted_index.it | 114 |
| abstract_inverted_index.of | 28, 95, 117, 182 |
| abstract_inverted_index.on | 92 |
| abstract_inverted_index.to | 30, 51, 82 |
| abstract_inverted_index.we | 46, 63, 121, 145 |
| abstract_inverted_index.RGB | 118 |
| abstract_inverted_index.The | 97, 154, 173 |
| abstract_inverted_index.and | 19, 41, 110, 129, 144, 184, 194, 196 |
| abstract_inverted_index.any | 203 |
| abstract_inverted_index.can | 199 |
| abstract_inverted_index.for | 158, 169 |
| abstract_inverted_index.has | 3, 75 |
| abstract_inverted_index.the | 60, 84, 93, 106, 123, 127, 136, 148, 159, 166, 170, 186, 192 |
| abstract_inverted_index.top | 155, 187 |
| abstract_inverted_index.two | 103 |
| abstract_inverted_index.use | 24 |
| abstract_inverted_index.was | 100, 108, 115 |
| abstract_inverted_index.(CV) | 2 |
| abstract_inverted_index.255, | 83 |
| abstract_inverted_index.Each | 133 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.both | 126 |
| abstract_inverted_index.each | 180 |
| abstract_inverted_index.five | 111 |
| abstract_inverted_index.from | 67, 80, 179 |
| abstract_inverted_index.into | 88, 102 |
| abstract_inverted_index.less | 57 |
| abstract_inverted_index.that | 35, 72, 176 |
| abstract_inverted_index.this | 44, 197 |
| abstract_inverted_index.type | 94 |
| abstract_inverted_index.used | 6, 201 |
| abstract_inverted_index.were | 86, 163 |
| abstract_inverted_index.when | 105, 113 |
| abstract_inverted_index.with | 56, 77, 165, 202 |
| abstract_inverted_index.Given | 71 |
| abstract_inverted_index.Next, | 120 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.data. | 58 |
| abstract_inverted_index.first | 61 |
| abstract_inverted_index.image | 36, 53, 74, 134 |
| abstract_inverted_index.model | 124 |
| abstract_inverted_index.newly | 130, 160 |
| abstract_inverted_index.pixel | 89, 98 |
| abstract_inverted_index.split | 101 |
| abstract_inverted_index.three | 156, 188 |
| abstract_inverted_index.train | 31 |
| abstract_inverted_index.using | 125, 147 |
| abstract_inverted_index.image. | 172 |
| abstract_inverted_index.images | 85, 162 |
| abstract_inverted_index.model. | 204 |
| abstract_inverted_index.models | 23 |
| abstract_inverted_index.number | 27 |
| abstract_inverted_index.photos | 29 |
| abstract_inverted_index.pixels | 76, 183 |
| abstract_inverted_index.showed | 139, 175 |
| abstract_inverted_index.single | 69 |
| abstract_inverted_index.space, | 143 |
| abstract_inverted_index.stage, | 62 |
| abstract_inverted_index.study, | 45 |
| abstract_inverted_index.values | 78 |
| abstract_inverted_index.vision | 1 |
| abstract_inverted_index.created | 161 |
| abstract_inverted_index.dataset | 107 |
| abstract_inverted_index.fields, | 13 |
| abstract_inverted_index.images. | 119 |
| abstract_inverted_index.improve | 52, 191 |
| abstract_inverted_index.models. | 33 |
| abstract_inverted_index.picture | 8 |
| abstract_inverted_index.process | 138 |
| abstract_inverted_index.provide | 47 |
| abstract_inverted_index.quality | 17 |
| abstract_inverted_index.ranging | 79 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.trained | 122 |
| abstract_inverted_index.various | 12 |
| abstract_inverted_index.Computer | 0 |
| abstract_inverted_index.accuracy | 55 |
| abstract_inverted_index.combined | 164 |
| abstract_inverted_index.composed | 116 |
| abstract_inverted_index.control, | 18 |
| abstract_inverted_index.dataset. | 70, 96 |
| abstract_inverted_index.datasets | 66 |
| abstract_inverted_index.ensemble | 152 |
| abstract_inverted_index.interval | 99, 181 |
| abstract_inverted_index.learning | 177 |
| abstract_inverted_index.numerous | 65 |
| abstract_inverted_index.original | 128, 171 |
| abstract_inverted_index.patterns | 178 |
| abstract_inverted_index.portions | 104, 112 |
| abstract_inverted_index.strategy | 50, 198 |
| abstract_inverted_index.systems. | 21 |
| abstract_inverted_index.topthree | 149 |
| abstract_inverted_index.training | 137 |
| abstract_inverted_index.accuracy, | 195 |
| abstract_inverted_index.datasets. | 132 |
| abstract_inverted_index.excessive | 26 |
| abstract_inverted_index.expensive | 40 |
| abstract_inverted_index.grayscale | 109 |
| abstract_inverted_index.including | 14 |
| abstract_inverted_index.intervals | 90 |
| abstract_inverted_index.medicine, | 15 |
| abstract_inverted_index.multistep | 49 |
| abstract_inverted_index.potential | 32 |
| abstract_inverted_index.separated | 87 |
| abstract_inverted_index.suggested | 146 |
| abstract_inverted_index.typically | 39 |
| abstract_inverted_index.ensembling | 185 |
| abstract_inverted_index.prediction | 142, 150 |
| abstract_inverted_index.production | 16 |
| abstract_inverted_index.technique. | 153 |
| abstract_inverted_index.Considering | 34 |
| abstract_inverted_index.acquisition | 37 |
| abstract_inverted_index.constructed | 64, 131 |
| abstract_inverted_index.performance | 193 |
| abstract_inverted_index.predictions | 157, 189 |
| abstract_inverted_index.probability | 151, 168 |
| abstract_inverted_index.applications | 10 |
| abstract_inverted_index.successfully | 5 |
| abstract_inverted_index.corresponding | 167 |
| abstract_inverted_index.non-identical | 141 |
| abstract_inverted_index.significantly | 190 |
| abstract_inverted_index.categorization | 9, 54 |
| abstract_inverted_index.transportation | 20 |
| abstract_inverted_index.time-consuming, | 42 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.55825383 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |