Ensemble score filter with image inpainting for data assimilation in tracking surface quasi-geostrophic dynamics with partial observations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.12419
Data assimilation plays a pivotal role in understanding and predicting turbulent systems within geoscience and weather forecasting, where data assimilation is used to address three fundamental challenges, i.e., high-dimensionality, nonlinearity, and partial observations. Recent advances in machine learning (ML)-based data assimilation methods have demonstrated encouraging results. In this work, we develop an ensemble score filter (EnSF) that integrates image inpainting to solve the data assimilation problems with partial observations. The EnSF method exploits an exclusively designed training-free diffusion models to solve high-dimensional nonlinear data assimilation problems. Its performance has been successfully demonstrated in the context of having full observations, i.e., all the state variables are directly or indirectly observed. However, because the EnSF does not use a covariance matrix to capture the dependence between the observed and unobserved state variables, it is nontrivial to extend the original EnSF method to the partial observation scenario. In this work, we incorporate various image inpainting techniques into the EnSF to predict the unobserved states during data assimilation. At each filtering step, we first use the diffusion model to estimate the observed states by integrating the likelihood information into the score function. Then, we use image inpainting methods to predict the unobserved state variables. We demonstrate the performance of the EnSF with inpainting by tracking the Surface Quasi-Geostrophic (SQG) model dynamics under a variety of scenarios. The successful proof of concept paves the way to more in-depth investigations on exploiting modern image inpainting techniques to advance data assimilation methodology for practical geoscience and weather forecasting problems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.12419
- https://arxiv.org/pdf/2501.12419
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406764763
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406764763Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.12419Digital Object Identifier
- Title
-
Ensemble score filter with image inpainting for data assimilation in tracking surface quasi-geostrophic dynamics with partial observationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-20Full publication date if available
- Authors
-
Siming Liang, Hoang Ngoc Tran, F. Bao, Hristo G. Chipilski, Peter Jan van Leeuwen, Guannan ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.12419Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.12419Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.12419Direct OA link when available
- Concepts
-
Inpainting, Data assimilation, Geostrophic wind, Tracking (education), Image (mathematics), Computer vision, Artificial intelligence, Filter (signal processing), Computer science, Ensemble Kalman filter, Kalman filter, Mathematics, Geography, Geology, Climatology, Meteorology, Extended Kalman filter, Psychology, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406764763 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.12419 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.12419 |
| ids.openalex | https://openalex.org/W4406764763 |
| fwci | |
| type | preprint |
| title | Ensemble score filter with image inpainting for data assimilation in tracking surface quasi-geostrophic dynamics with partial observations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9794999957084656 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T11405 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9430000185966492 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Geophysics and Gravity Measurements |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11727466 |
| concepts[0].level | 3 |
| concepts[0].score | 0.703639566898346 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[0].display_name | Inpainting |
| concepts[1].id | https://openalex.org/C24552861 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6998417377471924 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2670177 |
| concepts[1].display_name | Data assimilation |
| concepts[2].id | https://openalex.org/C133877212 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5880939364433289 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q929043 |
| concepts[2].display_name | Geostrophic wind |
| concepts[3].id | https://openalex.org/C2775936607 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5844495296478271 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[3].display_name | Tracking (education) |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5018956661224365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.48169001936912537 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4602886736392975 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C106131492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4389028549194336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[7].display_name | Filter (signal processing) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.43740785121917725 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C79334102 |
| concepts[9].level | 4 |
| concepts[9].score | 0.41577771306037903 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3072268 |
| concepts[9].display_name | Ensemble Kalman filter |
| concepts[10].id | https://openalex.org/C157286648 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3615439534187317 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[10].display_name | Kalman filter |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3427072763442993 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.25156277418136597 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.23713365197181702 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C49204034 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19676333665847778 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[14].display_name | Climatology |
| concepts[15].id | https://openalex.org/C153294291 |
| concepts[15].level | 1 |
| concepts[15].score | 0.18730029463768005 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[15].display_name | Meteorology |
| concepts[16].id | https://openalex.org/C206833254 |
| concepts[16].level | 3 |
| concepts[16].score | 0.17155086994171143 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5421817 |
| concepts[16].display_name | Extended Kalman filter |
| concepts[17].id | https://openalex.org/C15744967 |
| concepts[17].level | 0 |
| concepts[17].score | 0.13534462451934814 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[17].display_name | Psychology |
| concepts[18].id | https://openalex.org/C19417346 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[18].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/inpainting |
| keywords[0].score | 0.703639566898346 |
| keywords[0].display_name | Inpainting |
| keywords[1].id | https://openalex.org/keywords/data-assimilation |
| keywords[1].score | 0.6998417377471924 |
| keywords[1].display_name | Data assimilation |
| keywords[2].id | https://openalex.org/keywords/geostrophic-wind |
| keywords[2].score | 0.5880939364433289 |
| keywords[2].display_name | Geostrophic wind |
| keywords[3].id | https://openalex.org/keywords/tracking |
| keywords[3].score | 0.5844495296478271 |
| keywords[3].display_name | Tracking (education) |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.5018956661224365 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.48169001936912537 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4602886736392975 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/filter |
| keywords[7].score | 0.4389028549194336 |
| keywords[7].display_name | Filter (signal processing) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.43740785121917725 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/ensemble-kalman-filter |
| keywords[9].score | 0.41577771306037903 |
| keywords[9].display_name | Ensemble Kalman filter |
| keywords[10].id | https://openalex.org/keywords/kalman-filter |
| keywords[10].score | 0.3615439534187317 |
| keywords[10].display_name | Kalman filter |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3427072763442993 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.25156277418136597 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.23713365197181702 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/climatology |
| keywords[14].score | 0.19676333665847778 |
| keywords[14].display_name | Climatology |
| keywords[15].id | https://openalex.org/keywords/meteorology |
| keywords[15].score | 0.18730029463768005 |
| keywords[15].display_name | Meteorology |
| keywords[16].id | https://openalex.org/keywords/extended-kalman-filter |
| keywords[16].score | 0.17155086994171143 |
| keywords[16].display_name | Extended Kalman filter |
| keywords[17].id | https://openalex.org/keywords/psychology |
| keywords[17].score | 0.13534462451934814 |
| keywords[17].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.12419 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.12419 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.12419 |
| locations[1].id | doi:10.48550/arxiv.2501.12419 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.12419 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100933124 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-9652-795X |
| authorships[0].author.display_name | Siming Liang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liang, Siming |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060248343 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1401-3668 |
| authorships[1].author.display_name | Hoang Ngoc Tran |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tran, Hoang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108198165 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | F. Bao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bao, Feng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001694042 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3287-0038 |
| authorships[3].author.display_name | Hristo G. Chipilski |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chipilski, Hristo G. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5063378345 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2325-5340 |
| authorships[4].author.display_name | Peter Jan van Leeuwen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | van Leeuwen, Peter Jan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068443513 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Guannan Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Guannan |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.12419 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ensemble score filter with image inpainting for data assimilation in tracking surface quasi-geostrophic dynamics with partial observations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9794999957084656 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W4212971657, https://openalex.org/W1949985943, https://openalex.org/W2089385108, https://openalex.org/W2363380593, https://openalex.org/W2377052976, https://openalex.org/W2991541038, https://openalex.org/W2393565244, https://openalex.org/W2613759229, https://openalex.org/W2354857671, https://openalex.org/W2525014937 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.12419 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.12419 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.12419 |
| primary_location.id | pmh:oai:arXiv.org:2501.12419 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.12419 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.12419 |
| publication_date | 2025-01-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 116, 218 |
| abstract_inverted_index.At | 164 |
| abstract_inverted_index.In | 46, 144 |
| abstract_inverted_index.We | 200 |
| abstract_inverted_index.an | 51, 73 |
| abstract_inverted_index.by | 179, 209 |
| abstract_inverted_index.in | 6, 35, 92 |
| abstract_inverted_index.is | 20, 131 |
| abstract_inverted_index.it | 130 |
| abstract_inverted_index.of | 95, 204, 220, 225 |
| abstract_inverted_index.on | 234 |
| abstract_inverted_index.or | 106 |
| abstract_inverted_index.to | 22, 60, 79, 119, 133, 139, 156, 174, 194, 230, 240 |
| abstract_inverted_index.we | 49, 147, 168, 189 |
| abstract_inverted_index.Its | 86 |
| abstract_inverted_index.The | 69, 222 |
| abstract_inverted_index.all | 100 |
| abstract_inverted_index.and | 8, 14, 30, 126, 248 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.for | 245 |
| abstract_inverted_index.has | 88 |
| abstract_inverted_index.not | 114 |
| abstract_inverted_index.the | 62, 93, 101, 111, 121, 124, 135, 140, 154, 158, 171, 176, 181, 185, 196, 202, 205, 211, 228 |
| abstract_inverted_index.use | 115, 170, 190 |
| abstract_inverted_index.way | 229 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.EnSF | 70, 112, 137, 155, 206 |
| abstract_inverted_index.been | 89 |
| abstract_inverted_index.data | 18, 39, 63, 83, 162, 242 |
| abstract_inverted_index.does | 113 |
| abstract_inverted_index.each | 165 |
| abstract_inverted_index.full | 97 |
| abstract_inverted_index.have | 42 |
| abstract_inverted_index.into | 153, 184 |
| abstract_inverted_index.more | 231 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.that | 56 |
| abstract_inverted_index.this | 47, 145 |
| abstract_inverted_index.used | 21 |
| abstract_inverted_index.with | 66, 207 |
| abstract_inverted_index.(SQG) | 214 |
| abstract_inverted_index.Then, | 188 |
| abstract_inverted_index.first | 169 |
| abstract_inverted_index.i.e., | 27, 99 |
| abstract_inverted_index.image | 58, 150, 191, 237 |
| abstract_inverted_index.model | 173, 215 |
| abstract_inverted_index.paves | 227 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.proof | 224 |
| abstract_inverted_index.score | 53, 186 |
| abstract_inverted_index.solve | 61, 80 |
| abstract_inverted_index.state | 102, 128, 198 |
| abstract_inverted_index.step, | 167 |
| abstract_inverted_index.three | 24 |
| abstract_inverted_index.under | 217 |
| abstract_inverted_index.where | 17 |
| abstract_inverted_index.work, | 48, 146 |
| abstract_inverted_index.(EnSF) | 55 |
| abstract_inverted_index.Recent | 33 |
| abstract_inverted_index.during | 161 |
| abstract_inverted_index.extend | 134 |
| abstract_inverted_index.filter | 54 |
| abstract_inverted_index.having | 96 |
| abstract_inverted_index.matrix | 118 |
| abstract_inverted_index.method | 71, 138 |
| abstract_inverted_index.models | 78 |
| abstract_inverted_index.modern | 236 |
| abstract_inverted_index.states | 160, 178 |
| abstract_inverted_index.within | 12 |
| abstract_inverted_index.Surface | 212 |
| abstract_inverted_index.address | 23 |
| abstract_inverted_index.advance | 241 |
| abstract_inverted_index.because | 110 |
| abstract_inverted_index.between | 123 |
| abstract_inverted_index.capture | 120 |
| abstract_inverted_index.concept | 226 |
| abstract_inverted_index.context | 94 |
| abstract_inverted_index.develop | 50 |
| abstract_inverted_index.machine | 36 |
| abstract_inverted_index.methods | 41, 193 |
| abstract_inverted_index.partial | 31, 67, 141 |
| abstract_inverted_index.pivotal | 4 |
| abstract_inverted_index.predict | 157, 195 |
| abstract_inverted_index.systems | 11 |
| abstract_inverted_index.variety | 219 |
| abstract_inverted_index.various | 149 |
| abstract_inverted_index.weather | 15, 249 |
| abstract_inverted_index.However, | 109 |
| abstract_inverted_index.advances | 34 |
| abstract_inverted_index.designed | 75 |
| abstract_inverted_index.directly | 105 |
| abstract_inverted_index.dynamics | 216 |
| abstract_inverted_index.ensemble | 52 |
| abstract_inverted_index.estimate | 175 |
| abstract_inverted_index.exploits | 72 |
| abstract_inverted_index.in-depth | 232 |
| abstract_inverted_index.learning | 37 |
| abstract_inverted_index.observed | 125, 177 |
| abstract_inverted_index.original | 136 |
| abstract_inverted_index.problems | 65 |
| abstract_inverted_index.results. | 45 |
| abstract_inverted_index.tracking | 210 |
| abstract_inverted_index.diffusion | 77, 172 |
| abstract_inverted_index.filtering | 166 |
| abstract_inverted_index.function. | 187 |
| abstract_inverted_index.nonlinear | 82 |
| abstract_inverted_index.observed. | 108 |
| abstract_inverted_index.practical | 246 |
| abstract_inverted_index.problems. | 85, 251 |
| abstract_inverted_index.scenario. | 143 |
| abstract_inverted_index.turbulent | 10 |
| abstract_inverted_index.variables | 103 |
| abstract_inverted_index.(ML)-based | 38 |
| abstract_inverted_index.covariance | 117 |
| abstract_inverted_index.dependence | 122 |
| abstract_inverted_index.exploiting | 235 |
| abstract_inverted_index.geoscience | 13, 247 |
| abstract_inverted_index.indirectly | 107 |
| abstract_inverted_index.inpainting | 59, 151, 192, 208, 238 |
| abstract_inverted_index.integrates | 57 |
| abstract_inverted_index.likelihood | 182 |
| abstract_inverted_index.nontrivial | 132 |
| abstract_inverted_index.predicting | 9 |
| abstract_inverted_index.scenarios. | 221 |
| abstract_inverted_index.successful | 223 |
| abstract_inverted_index.techniques | 152, 239 |
| abstract_inverted_index.unobserved | 127, 159, 197 |
| abstract_inverted_index.variables, | 129 |
| abstract_inverted_index.variables. | 199 |
| abstract_inverted_index.challenges, | 26 |
| abstract_inverted_index.demonstrate | 201 |
| abstract_inverted_index.encouraging | 44 |
| abstract_inverted_index.exclusively | 74 |
| abstract_inverted_index.forecasting | 250 |
| abstract_inverted_index.fundamental | 25 |
| abstract_inverted_index.incorporate | 148 |
| abstract_inverted_index.information | 183 |
| abstract_inverted_index.integrating | 180 |
| abstract_inverted_index.methodology | 244 |
| abstract_inverted_index.observation | 142 |
| abstract_inverted_index.performance | 87, 203 |
| abstract_inverted_index.assimilation | 1, 19, 40, 64, 84, 243 |
| abstract_inverted_index.demonstrated | 43, 91 |
| abstract_inverted_index.forecasting, | 16 |
| abstract_inverted_index.successfully | 90 |
| abstract_inverted_index.assimilation. | 163 |
| abstract_inverted_index.nonlinearity, | 29 |
| abstract_inverted_index.observations, | 98 |
| abstract_inverted_index.observations. | 32, 68 |
| abstract_inverted_index.training-free | 76 |
| abstract_inverted_index.understanding | 7 |
| abstract_inverted_index.investigations | 233 |
| abstract_inverted_index.high-dimensional | 81 |
| abstract_inverted_index.Quasi-Geostrophic | 213 |
| abstract_inverted_index.high-dimensionality, | 28 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |