Entropic Open-Set Active Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i5.28269
Active Learning (AL) aims to enhance the performance of deep models by selecting the most informative samples for annotation from a pool of unlabeled data. Despite impressive performance in closed-set settings, most AL methods fail in real-world scenarios where the unlabeled data contains unknown categories. Recently, a few studies have attempted to tackle the AL problem for the open-set setting. However, these methods focus more on selecting known samples and do not efficiently utilize unknown samples obtained during AL rounds. In this work, we propose an Entropic Open-set AL (EOAL) framework which leverages both known and unknown distributions effectively to select informative samples during AL rounds. Specifically, our approach employs two different entropy scores. One measures the uncertainty of a sample with respect to the known-class distributions. The other measures the uncertainty of the sample with respect to the unknown-class distributions. By utilizing these two entropy scores we effectively separate the known and unknown samples from the unlabeled data resulting in better sampling. Through extensive experiments, we show that the proposed method outperforms existing state-of-the-art methods on CIFAR-10, CIFAR-100, and TinyImageNet datasets. Code is available at https://github.com/bardisafa/EOAL.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i5.28269
- https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529
- OA Status
- diamond
- Cited By
- 15
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393159168
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393159168Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i5.28269Digital Object Identifier
- Title
-
Entropic Open-Set Active LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Bardia Safaei, Vibashan VS, Celso M. de Melo, Vishal M. PatelList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i5.28269Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529Direct OA link when available
- Concepts
-
Active learning (machine learning), Set (abstract data type), Computer science, Artificial intelligence, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 8Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393159168 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i5.28269 |
| ids.doi | https://doi.org/10.1609/aaai.v38i5.28269 |
| ids.openalex | https://openalex.org/W4393159168 |
| fwci | 3.63774734 |
| type | article |
| title | Entropic Open-Set Active Learning |
| biblio.issue | 5 |
| biblio.volume | 38 |
| biblio.last_page | 4694 |
| biblio.first_page | 4686 |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9944000244140625 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T10791 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9229000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Control Systems Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C77967617 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5533763766288757 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[0].display_name | Active learning (machine learning) |
| concepts[1].id | https://openalex.org/C177264268 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5117530822753906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[1].display_name | Set (abstract data type) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4582376480102539 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.2867920994758606 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C199360897 |
| concepts[4].level | 1 |
| concepts[4].score | 0.10465133190155029 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[4].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/active-learning |
| keywords[0].score | 0.5533763766288757 |
| keywords[0].display_name | Active learning (machine learning) |
| keywords[1].id | https://openalex.org/keywords/set |
| keywords[1].score | 0.5117530822753906 |
| keywords[1].display_name | Set (abstract data type) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4582376480102539 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.2867920994758606 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/programming-language |
| keywords[4].score | 0.10465133190155029 |
| keywords[4].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i5.28269 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i5.28269 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052225293 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9504-8637 |
| authorships[0].author.display_name | Bardia Safaei |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bardia Safaei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johns Hopkins University |
| authorships[1].author.id | https://openalex.org/A5004330920 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vibashan VS |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vibashan VS |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Johns Hopkins University |
| authorships[2].author.id | https://openalex.org/A5066072868 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2680-8334 |
| authorships[2].author.display_name | Celso M. de Melo |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I166416128, https://openalex.org/I2802705668 |
| authorships[2].affiliations[0].raw_affiliation_string | DEVCOM Army Research Laboratory |
| authorships[2].institutions[0].id | https://openalex.org/I166416128 |
| authorships[2].institutions[0].ror | https://ror.org/011hc8f90 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1304082316, https://openalex.org/I1330347796, https://openalex.org/I166416128, https://openalex.org/I2802705668, https://openalex.org/I4210154437 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | DEVCOM Army Research Laboratory |
| authorships[2].institutions[1].id | https://openalex.org/I2802705668 |
| authorships[2].institutions[1].ror | https://ror.org/02rdkx920 |
| authorships[2].institutions[1].type | other |
| authorships[2].institutions[1].lineage | https://openalex.org/I1304082316, https://openalex.org/I1330347796, https://openalex.org/I2802705668, https://openalex.org/I4210154437 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | United States Army Combat Capabilities Development Command |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Celso M. De Melo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | DEVCOM Army Research Laboratory |
| authorships[3].author.id | https://openalex.org/A5004716468 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5239-692X |
| authorships[3].author.display_name | Vishal M. Patel |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Vishal M. Patel |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Johns Hopkins University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Entropic Open-Set Active Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9944000244140625 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v38i5.28269 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i5.28269 |
| primary_location.id | doi:10.1609/aaai.v38i5.28269 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28269/28529 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i5.28269 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6679316199, https://openalex.org/W6694286045, https://openalex.org/W3095099350, https://openalex.org/W2412782625, https://openalex.org/W3202092515, https://openalex.org/W6687483927, https://openalex.org/W4309585996, https://openalex.org/W2951061410, https://openalex.org/W3180672483, https://openalex.org/W4221158732, https://openalex.org/W6677757056, https://openalex.org/W3118707261, https://openalex.org/W6840512093, https://openalex.org/W6755251542, https://openalex.org/W6644929900, https://openalex.org/W6810753598, https://openalex.org/W2935590460, https://openalex.org/W4306706525, https://openalex.org/W6811359042, https://openalex.org/W1483870316, https://openalex.org/W2613718673, https://openalex.org/W6846734430, https://openalex.org/W3151187820, https://openalex.org/W2982673782, https://openalex.org/W6678038612, https://openalex.org/W6670662067, https://openalex.org/W2943506973, https://openalex.org/W2555897561, https://openalex.org/W3011147549, https://openalex.org/W6761687610, https://openalex.org/W6810511636, https://openalex.org/W4308233888, https://openalex.org/W6851442947, https://openalex.org/W6653211413, https://openalex.org/W1912128066, https://openalex.org/W1599935123, https://openalex.org/W4226489086, https://openalex.org/W2904509905, https://openalex.org/W4309651314, https://openalex.org/W2194775991, https://openalex.org/W2963875483, https://openalex.org/W4295312788, https://openalex.org/W2973218493, https://openalex.org/W2963037989, https://openalex.org/W2895752198, https://openalex.org/W4386075597, https://openalex.org/W4319300052, https://openalex.org/W2119720396, https://openalex.org/W2272331516, https://openalex.org/W4388963631, https://openalex.org/W2948367246, https://openalex.org/W4372267559, https://openalex.org/W3018953709, https://openalex.org/W2128518360, https://openalex.org/W4312447943, https://openalex.org/W3035081753, https://openalex.org/W4312595781, https://openalex.org/W3118608800, https://openalex.org/W2523246573, https://openalex.org/W2127218421, https://openalex.org/W1978633512, https://openalex.org/W4362679702, https://openalex.org/W2774918944, https://openalex.org/W4283795704, https://openalex.org/W4312677475, https://openalex.org/W2011674654, https://openalex.org/W2949308370, https://openalex.org/W4214671648, https://openalex.org/W2953106684, https://openalex.org/W4320013936, https://openalex.org/W2119880843, https://openalex.org/W3133952434, https://openalex.org/W4295521015, https://openalex.org/W3166396011 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 20, 46, 119 |
| abstract_inverted_index.AL | 32, 54, 78, 88, 104 |
| abstract_inverted_index.By | 141 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.an | 85 |
| abstract_inverted_index.at | 185 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.do | 70 |
| abstract_inverted_index.in | 28, 35, 160 |
| abstract_inverted_index.is | 183 |
| abstract_inverted_index.of | 8, 22, 118, 132 |
| abstract_inverted_index.on | 65, 176 |
| abstract_inverted_index.to | 4, 51, 99, 123, 137 |
| abstract_inverted_index.we | 83, 147, 166 |
| abstract_inverted_index.One | 114 |
| abstract_inverted_index.The | 127 |
| abstract_inverted_index.and | 69, 95, 152, 179 |
| abstract_inverted_index.few | 47 |
| abstract_inverted_index.for | 17, 56 |
| abstract_inverted_index.not | 71 |
| abstract_inverted_index.our | 107 |
| abstract_inverted_index.the | 6, 13, 39, 53, 57, 116, 124, 130, 133, 138, 150, 156, 169 |
| abstract_inverted_index.two | 110, 144 |
| abstract_inverted_index.(AL) | 2 |
| abstract_inverted_index.Code | 182 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.both | 93 |
| abstract_inverted_index.data | 41, 158 |
| abstract_inverted_index.deep | 9 |
| abstract_inverted_index.fail | 34 |
| abstract_inverted_index.from | 19, 155 |
| abstract_inverted_index.have | 49 |
| abstract_inverted_index.more | 64 |
| abstract_inverted_index.most | 14, 31 |
| abstract_inverted_index.pool | 21 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.this | 81 |
| abstract_inverted_index.with | 121, 135 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.focus | 63 |
| abstract_inverted_index.known | 67, 94, 151 |
| abstract_inverted_index.other | 128 |
| abstract_inverted_index.these | 61, 143 |
| abstract_inverted_index.where | 38 |
| abstract_inverted_index.which | 91 |
| abstract_inverted_index.work, | 82 |
| abstract_inverted_index.(EOAL) | 89 |
| abstract_inverted_index.Active | 0 |
| abstract_inverted_index.better | 161 |
| abstract_inverted_index.during | 77, 103 |
| abstract_inverted_index.method | 171 |
| abstract_inverted_index.models | 10 |
| abstract_inverted_index.sample | 120, 134 |
| abstract_inverted_index.scores | 146 |
| abstract_inverted_index.select | 100 |
| abstract_inverted_index.tackle | 52 |
| abstract_inverted_index.Despite | 25 |
| abstract_inverted_index.Through | 163 |
| abstract_inverted_index.employs | 109 |
| abstract_inverted_index.enhance | 5 |
| abstract_inverted_index.entropy | 112, 145 |
| abstract_inverted_index.methods | 33, 62, 175 |
| abstract_inverted_index.problem | 55 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.respect | 122, 136 |
| abstract_inverted_index.rounds. | 79, 105 |
| abstract_inverted_index.samples | 16, 68, 75, 102, 154 |
| abstract_inverted_index.scores. | 113 |
| abstract_inverted_index.studies | 48 |
| abstract_inverted_index.unknown | 43, 74, 96, 153 |
| abstract_inverted_index.utilize | 73 |
| abstract_inverted_index.Entropic | 86 |
| abstract_inverted_index.However, | 60 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.Open-set | 87 |
| abstract_inverted_index.approach | 108 |
| abstract_inverted_index.contains | 42 |
| abstract_inverted_index.existing | 173 |
| abstract_inverted_index.measures | 115, 129 |
| abstract_inverted_index.obtained | 76 |
| abstract_inverted_index.open-set | 58 |
| abstract_inverted_index.proposed | 170 |
| abstract_inverted_index.separate | 149 |
| abstract_inverted_index.setting. | 59 |
| abstract_inverted_index.CIFAR-10, | 177 |
| abstract_inverted_index.Recently, | 45 |
| abstract_inverted_index.attempted | 50 |
| abstract_inverted_index.available | 184 |
| abstract_inverted_index.datasets. | 181 |
| abstract_inverted_index.different | 111 |
| abstract_inverted_index.extensive | 164 |
| abstract_inverted_index.framework | 90 |
| abstract_inverted_index.leverages | 92 |
| abstract_inverted_index.resulting | 159 |
| abstract_inverted_index.sampling. | 162 |
| abstract_inverted_index.scenarios | 37 |
| abstract_inverted_index.selecting | 12, 66 |
| abstract_inverted_index.settings, | 30 |
| abstract_inverted_index.unlabeled | 23, 40, 157 |
| abstract_inverted_index.utilizing | 142 |
| abstract_inverted_index.CIFAR-100, | 178 |
| abstract_inverted_index.annotation | 18 |
| abstract_inverted_index.closed-set | 29 |
| abstract_inverted_index.impressive | 26 |
| abstract_inverted_index.real-world | 36 |
| abstract_inverted_index.categories. | 44 |
| abstract_inverted_index.effectively | 98, 148 |
| abstract_inverted_index.efficiently | 72 |
| abstract_inverted_index.informative | 15, 101 |
| abstract_inverted_index.known-class | 125 |
| abstract_inverted_index.outperforms | 172 |
| abstract_inverted_index.performance | 7, 27 |
| abstract_inverted_index.uncertainty | 117, 131 |
| abstract_inverted_index.TinyImageNet | 180 |
| abstract_inverted_index.experiments, | 165 |
| abstract_inverted_index.Specifically, | 106 |
| abstract_inverted_index.distributions | 97 |
| abstract_inverted_index.unknown-class | 139 |
| abstract_inverted_index.distributions. | 126, 140 |
| abstract_inverted_index.state-of-the-art | 174 |
| abstract_inverted_index.https://github.com/bardisafa/EOAL. | 186 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.92619926 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |